diff options
-rwxr-xr-x | astro/eor_window.py | 221 |
1 files changed, 134 insertions, 87 deletions
diff --git a/astro/eor_window.py b/astro/eor_window.py index 39f645a..839ec5b 100755 --- a/astro/eor_window.py +++ b/astro/eor_window.py @@ -21,12 +21,25 @@ from astropy.io import fits from astropy.cosmology import FlatLambdaCDM import astropy.constants as ac -import matplotlib.pyplot as plt +import matplotlib +import matplotlib.style from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure -plt.style.use("ggplot") +# Matplotlib settings +matplotlib.style.use("ggplot") +for k, v in [("font.family", "monospace"), + ("image.cmap", "jet"), + ("xtick.major.size", 7.0), + ("xtick.major.width", 2.0), + ("xtick.minor.size", 4.0), + ("xtick.minor.width", 1.5), + ("ytick.major.size", 7.0), + ("ytick.major.width", 2.0), + ("ytick.minor.size", 4.0), + ("ytick.minor.width", 1.5)]: + matplotlib.rcParams[k] = v # HI line frequency freq21cm = 1420.405751 # [MHz] @@ -46,12 +59,23 @@ class PS2D: """ 2D cylindrically averaged power spectrum; calculated by ``ps2d.py``. + Parameters + ---------- + fov : float + instrumental field of view (FoV) + Unit: [deg] + e : float, optional + Thyagarajan proposed characteristic convolution width factor, + generally 0-2; default: 2.0 + Attributes ---------- ps2d : 2D `~numpy.ndarray` Shape: [n_k_los, n_k_perp] """ - def __init__(self, infile): + def __init__(self, infile, fov, e=2.0, + k_perp_min=None, k_perp_max=None, + k_los_min=None, k_los_max=None): self.infile = infile with fits.open(infile) as f: self.header = f[0].header @@ -63,6 +87,21 @@ class PS2D: self.zc = self.header["Z_C"] self.pixelsize = self.header["PixSize"] self.unit = self.header["BUNIT"] + self.set(fov=fov, e=e, k_perp_min=k_perp_min, k_perp_max=k_perp_max, + k_los_min=k_los_min, k_los_max=k_los_max) + + def set(self, **kwargs): + for key, value in kwargs.items(): + if key in ["fov", "e", "k_perp_min", "k_perp_max", + "k_los_min", "k_los_max"]: + if value is not None: + setattr(self, key, value) + else: + raise ValueError("invalid item: %s" % key) + + @property + def power_unit(self): + return self.unit.split(" ")[0] # [K^2] or [mK^2] @property def k_perp(self): @@ -78,19 +117,47 @@ class PS2D: @property def k_perp_min(self): - return self.k_perp[1] # ignore the first 0 + try: + return self._k_perp_min + except AttributeError: + return self.k_perp[1] # ignore the first 0 + + @k_perp_min.setter + def k_perp_min(self, value): + self._k_perp_min = value @property def k_perp_max(self): - return self.k_perp[-1] + try: + return self._k_perp_max + except AttributeError: + return self.k_perp[-1] + + @k_perp_max.setter + def k_perp_max(self, value): + self._k_perp_max = value @property def k_los_min(self): - return self.k_los[1] # ignore the first 0 + try: + return self._k_los_min + except AttributeError: + return self.k_los[1] # ignore the first 0 + + @k_los_min.setter + def k_los_min(self, value): + self._k_los_min = value @property def k_los_max(self): - return self.k_los[-1] + try: + return self._k_los_max + except AttributeError: + return self.k_los[-1] + + @k_los_max.setter + def k_los_max(self, value): + self._k_los_max = value def sum_power(self, window): """ @@ -111,68 +178,49 @@ class PS2D: power = np.sum(self.ps2d * window * volume) return power - def eor_window(self, fov, e, - k_perp_min=None, k_perp_max=None, - k_los_min=None, k_los_max=None): + def eor_window(self): """ Determine the EoR window region. - Parameters + Attributes ---------- - fov : float - instrumental field of view (FoV) - Unit: [deg] - e : float - Thyagarajan proposed characteristic convolution width factor, - generally 0-3 - - Returns - ------- window : 2D bool `~numpy.ndarray` 2D array mask of the same size of the power spectrum indicating the defined EoR window region. - header : fits.Header - FITS header with the keywords recording the EoR window variables - """ - if k_perp_min is None: - k_perp_min = self.k_perp_min - if k_perp_max is None: - k_perp_max = self.k_perp_max - if k_los_min is None: - k_los_min = self.k_los_min - if k_los_max is None: - k_los_max = self.k_los_max + Returns + ------- + window + """ + print("k_perp: [%g, %g] [Mpc^-1]" % (self.k_perp_min, self.k_perp_max)) + print("k_los: [%g, %g] [Mpc^-1]" % (self.k_los_min, self.k_los_max)) + print("FoV: %.1f [deg]" % self.fov) + print("e_ConvWidth: %.1f" % self.e) window = np.ones_like(self.ps2d, dtype=bool) k_perp = self.k_perp k_los = self.k_los - k_wedge = self.wedge_edge(k_perp, fov=fov, e=e) - window[k_los < k_los_min, :] = False - window[k_los > k_los_max, :] = False - window[:, k_perp < k_perp_min] = False - window[:, k_perp > k_perp_max] = False + k_wedge = self.wedge_edge() + window[k_los < self.k_los_min, :] = False + window[k_los > self.k_los_max, :] = False + window[:, k_perp < self.k_perp_min] = False + window[:, k_perp > self.k_perp_max] = False for i, k in enumerate(k_wedge): window[k_los < k, i] = False + self.window = window + return window - header = self.eor_window_header(fov=fov, e=e, - k_perp_min=k_perp_min, - k_perp_max=k_perp_max, - k_los_min=k_los_min, - k_los_max=k_los_max) - return (window, header) - - def eor_window_header(self, fov, e, k_perp_min, k_perp_max, - k_los_min, k_los_max): + def header_eor_windowr(self): header = self.header.copy(strip=True) - header["FoV"] = (fov, "[deg] Field of view to determine EoR window") - header["e_ConvW"] = (e, "characteristic convolution width") - header["kper_min"] = (k_perp_min, "[Mpc^-1] minimum k_perp") - header["kper_max"] = (k_perp_max, "[Mpc^-1] maximum k_perp") - header["klos_min"] = (k_los_min, "[Mpc^-1] minimum k_los") - header["klos_max"] = (k_los_max, "[Mpc^-1] maximum k_los") + header["FoV"] = (self.fov, + "[deg] Field of view to determine EoR window") + header["e_ConvW"] = (self.e, "characteristic convolution width") + header["kper_min"] = (self.k_perp_min, "[Mpc^-1] minimum k_perp") + header["kper_max"] = (self.k_perp_max, "[Mpc^-1] maximum k_perp") + header["klos_min"] = (self.k_los_min, "[Mpc^-1] minimum k_los") + header["klos_max"] = (self.k_los_max, "[Mpc^-1] maximum k_los") return header - def wedge_edge(self, k_perp, fov, e): + def wedge_edge(self): """ The boundary/edge between the EoR window (top-left) and the foreground wedge (bottom-right). @@ -181,42 +229,46 @@ class PS2D: Dc = cosmo.comoving_distance(self.zc).value # [Mpc] c = ac.c.to("km/s").value # [km/s] coef = Hz * Dc / (c * (1+self.zc)) - term1 = np.sin(np.deg2rad(fov)) * k_perp # [Mpc^-1] - term2 = ((2*np.pi * e * freq21cm / self.bandwidth) / + term1 = np.sin(np.deg2rad(self.fov)) * self.k_perp # [Mpc^-1] + term2 = ((2*np.pi * self.e * freq21cm / self.bandwidth) / ((1 + self.zc) * Dc)) # [Mpc^-1] k_los = coef * (term1 + term2) return k_los - def plot(self, ax, fov, e, - k_perp_min=None, k_perp_max=None, - k_los_min=None, k_los_max=None, - colormap="jet"): + def save_eor_window(self, outfile, clobber=False): + header = self.header_eor_windowr() + hdu = fits.PrimaryHDU(data=self.window.astype(np.int16), header=header) + try: + hdu.writeto(outfile, overwrite=clobber) + except TypeError: + hdu.writeto(outfile, clobber=clobber) + + def plot(self, ax, power=None, colormap="jet"): """ Plot the 2D power spectrum with EoR window marked on. """ - if k_perp_min is None: - k_perp_min = self.k_perp_min - if k_perp_max is None: - k_perp_max = self.k_perp_max - if k_los_min is None: - k_los_min = self.k_los_min - if k_los_max is None: - k_los_max = self.k_los_max - x = self.k_perp y = self.k_los - y_wedge = self.wedge_edge(x, fov=fov, e=e) - title = "EoR Window (fov=%.1f[deg], e=%.1f)" % (fov, e) + y_wedge = self.wedge_edge() + if power is None: + title = "EoR Window (fov=%.1f[deg], e=%.1f)" % (self.fov, self.e) + else: + title = ("EoR Window (fov=%.1f[deg], e=%.1f, power=%g[%s])" % + (self.fov, self.e, power, self.power_unit)) # data mappable = ax.pcolormesh(x[1:], y[1:], np.log10(self.ps2d[1:, 1:]), cmap=colormap) # EoR window - ax.axvline(x=k_perp_min, color="black", linewidth=2, linestyle="--") - ax.axvline(x=k_perp_max, color="black", linewidth=2, linestyle="--") - ax.axhline(y=k_los_min, color="black", linewidth=2, linestyle="--") - ax.axhline(y=k_los_max, color="black", linewidth=2, linestyle="--") + ax.axvline(x=self.k_perp_min, color="black", + linewidth=2, linestyle="--") + ax.axvline(x=self.k_perp_max, color="black", + linewidth=2, linestyle="--") + ax.axhline(y=self.k_los_min, color="black", + linewidth=2, linestyle="--") + ax.axhline(y=self.k_los_max, color="black", + linewidth=2, linestyle="--") ax.plot(x, y_wedge, color="black", linewidth=2, linestyle="--") # ax.set(xscale="log", yscale="log", @@ -225,7 +277,7 @@ class PS2D: ylabel=r"k$_{||}$ [Mpc$^{-1}$]", title=title) cb = ax.figure.colorbar(mappable, ax=ax, pad=0.01, aspect=30) - cb.ax.set_xlabel(r"[%s$^2$ Mpc$^3$]" % self.unit) + cb.ax.set_xlabel("[%s]" % self.unit) return ax @@ -236,7 +288,7 @@ def main(): type=float, required=True, help="instrumental FoV to determine the EoR window") parser.add_argument("-e", "--conv-width", dest="conv_width", - type=float, default=3.0, + type=float, default=2.0, help="characteristic convolution width (default: 3.0)") parser.add_argument("-p", "--k-perp-min", dest="k_perp_min", type=float, help="minimum k wavenumber perpendicular to LoS; " + @@ -257,27 +309,22 @@ def main(): parser.add_argument("infile", help="2D power spectrum FITS file") args = parser.parse_args() - ps2d = PS2D(args.infile) - window, header = ps2d.eor_window(fov=args.fov, e=args.conv_width, - k_perp_min=args.k_perp_min, - k_perp_max=args.k_perp_max, - k_los_min=args.k_los_min, - k_los_max=args.k_los_max) + ps2d = PS2D(args.infile, fov=args.fov, e=args.conv_width, + k_perp_min=args.k_perp_min, k_perp_max=args.k_perp_max, + k_los_min=args.k_los_min, k_los_max=args.k_los_max) + window = ps2d.eor_window() power = ps2d.sum_power(window) - print("Total power within EoR window: %g [%s]" % (power, ps2d.unit)) + print("Total power within EoR window: %g [%s]" % (power, ps2d.power_unit)) if args.save_window: - hdu = fits.PrimaryHDU(data=window.astype(np.int16), header=header) - hdu.writeto(args.save_window) + ps2d.save_eor_window(outfile=args.save_window) print("Saved EoR window into file: %s" % args.save_window) if args.plot: fig = Figure(figsize=(8, 8), dpi=150) FigureCanvas(fig) ax = fig.add_subplot(1, 1, 1) - ps2d.plot(ax=ax, fov=args.fov, e=args.conv_width, - k_perp_min=args.k_perp_min, k_perp_max=args.k_perp_max, - k_los_min=args.k_los_min, k_los_max=args.k_los_max) + ps2d.plot(ax=ax, power=power) fig.tight_layout() fig.savefig(args.plot) print("Plotted 2D PSD with EoR window and saved to: %s" % args.plot) |