diff options
Diffstat (limited to 'astro/calc_psd.py')
-rwxr-xr-x | astro/calc_psd.py | 29 |
1 files changed, 12 insertions, 17 deletions
diff --git a/astro/calc_psd.py b/astro/calc_psd.py index 6029169..9312614 100755 --- a/astro/calc_psd.py +++ b/astro/calc_psd.py @@ -35,14 +35,13 @@ class PSD: Computes the 2D power spectral density and the radially averaged power spectral density (i.e., 1D power spectrum). """ - def __init__(self, image, pixel=(1.0, "pixel"), normalize=True, step=None): + def __init__(self, image, pixel=(1.0, "pixel"), step=None): self.image = np.array(image, dtype=np.float) self.shape = self.image.shape if self.shape[0] != self.shape[1]: raise ValueError("input image is not square!") self.pixel = pixel - self.normalize = normalize self.step = step if step is not None and step <= 1: raise ValueError("step must be greater than 1") @@ -87,24 +86,23 @@ class PSD: Note that the low frequency components are shifted to the center of the FFT'ed image. - NOTE: + NOTE + ---- The zero-frequency component is shifted to position of index (0-based) (ceil((n-1) / 2), ceil((m-1) / 2)), where (n, m) are the number of rows and columns of the image/psd2d. - Return: - 2D power spectral density, which is dimensionless if normalized, - otherwise has unit ${pixel_unit}^2. + Returns + ------- + 2D power spectral density, which has dimension of ${input_unit}^2. """ print("Calculating 2D power spectral density ... ", end="", flush=True) rows, cols = self.shape # Compute the power spectral density (i.e., power spectrum) imgf = np.fft.fftshift(np.fft.fft2(self.image)) - if self.normalize: - norm = rows * cols * self.pixel[0]**2 - else: - norm = 1.0 # Do not normalize - self.psd2d = (np.abs(imgf) / norm) ** 2 + # Normalization w.r.t. image size + norm = rows * cols * self.pixel[0]**2 + self.psd2d = (np.abs(imgf) ** 2) / norm print("DONE", flush=True) return self.psd2d @@ -196,11 +194,8 @@ class PSD: ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_title("Radially Averaged Power Spectral Density") - ax.set_xlabel(r"k (%s$^{-1}$)" % self.pixel[1]) - if self.normalize: - ax.set_ylabel("Power") - else: - ax.set_ylabel(r"Power (%s$^2$)" % self.pixel[1]) + ax.set_xlabel(r"k [%s$^{-1}$]" % self.pixel[1]) + ax.set_ylabel("Power") fig.tight_layout() return (fig, ax) @@ -276,7 +271,7 @@ def main(): raise OSError("output plot file '%s' already exists" % plotfile) header, image = open_image(args.infile) - psdobj = PSD(image=image, normalize=True, step=args.step) + psdobj = PSD(image=image, step=args.step) freqs, psd, psd_err = psdobj.calc_psd() # Write out PSD results |