aboutsummaryrefslogtreecommitdiffstats
path: root/astro/calc_psd.py
diff options
context:
space:
mode:
Diffstat (limited to 'astro/calc_psd.py')
-rwxr-xr-xastro/calc_psd.py29
1 files changed, 12 insertions, 17 deletions
diff --git a/astro/calc_psd.py b/astro/calc_psd.py
index 6029169..9312614 100755
--- a/astro/calc_psd.py
+++ b/astro/calc_psd.py
@@ -35,14 +35,13 @@ class PSD:
Computes the 2D power spectral density and the radially averaged power
spectral density (i.e., 1D power spectrum).
"""
- def __init__(self, image, pixel=(1.0, "pixel"), normalize=True, step=None):
+ def __init__(self, image, pixel=(1.0, "pixel"), step=None):
self.image = np.array(image, dtype=np.float)
self.shape = self.image.shape
if self.shape[0] != self.shape[1]:
raise ValueError("input image is not square!")
self.pixel = pixel
- self.normalize = normalize
self.step = step
if step is not None and step <= 1:
raise ValueError("step must be greater than 1")
@@ -87,24 +86,23 @@ class PSD:
Note that the low frequency components are shifted to the center
of the FFT'ed image.
- NOTE:
+ NOTE
+ ----
The zero-frequency component is shifted to position of index (0-based)
(ceil((n-1) / 2), ceil((m-1) / 2)),
where (n, m) are the number of rows and columns of the image/psd2d.
- Return:
- 2D power spectral density, which is dimensionless if normalized,
- otherwise has unit ${pixel_unit}^2.
+ Returns
+ -------
+ 2D power spectral density, which has dimension of ${input_unit}^2.
"""
print("Calculating 2D power spectral density ... ", end="", flush=True)
rows, cols = self.shape
# Compute the power spectral density (i.e., power spectrum)
imgf = np.fft.fftshift(np.fft.fft2(self.image))
- if self.normalize:
- norm = rows * cols * self.pixel[0]**2
- else:
- norm = 1.0 # Do not normalize
- self.psd2d = (np.abs(imgf) / norm) ** 2
+ # Normalization w.r.t. image size
+ norm = rows * cols * self.pixel[0]**2
+ self.psd2d = (np.abs(imgf) ** 2) / norm
print("DONE", flush=True)
return self.psd2d
@@ -196,11 +194,8 @@ class PSD:
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.set_title("Radially Averaged Power Spectral Density")
- ax.set_xlabel(r"k (%s$^{-1}$)" % self.pixel[1])
- if self.normalize:
- ax.set_ylabel("Power")
- else:
- ax.set_ylabel(r"Power (%s$^2$)" % self.pixel[1])
+ ax.set_xlabel(r"k [%s$^{-1}$]" % self.pixel[1])
+ ax.set_ylabel("Power")
fig.tight_layout()
return (fig, ax)
@@ -276,7 +271,7 @@ def main():
raise OSError("output plot file '%s' already exists" % plotfile)
header, image = open_image(args.infile)
- psdobj = PSD(image=image, normalize=True, step=args.step)
+ psdobj = PSD(image=image, step=args.step)
freqs, psd, psd_err = psdobj.calc_psd()
# Write out PSD results