aboutsummaryrefslogtreecommitdiffstats
path: root/astro/fitting/fit_betasbp_cut.py
diff options
context:
space:
mode:
Diffstat (limited to 'astro/fitting/fit_betasbp_cut.py')
-rwxr-xr-xastro/fitting/fit_betasbp_cut.py161
1 files changed, 130 insertions, 31 deletions
diff --git a/astro/fitting/fit_betasbp_cut.py b/astro/fitting/fit_betasbp_cut.py
index 4e37f91..9dcf730 100755
--- a/astro/fitting/fit_betasbp_cut.py
+++ b/astro/fitting/fit_betasbp_cut.py
@@ -11,6 +11,11 @@
# 2015/05/29
#
# Changelogs:
+# v0.5.0, 2015/06/07, Aaron LI
+# * added 'fit_model_bounds' using 'scipy.optimize.minimize' to
+# perform function minimization with bounds
+# * split the data cut section to function 'cut_data'
+# * added argument 'options' to 'fit_model_bounds'
# v0.4.0, 2015/06/06, Aaron LI
# * replace getopt with 'argparse'
# * added 'get_parameter' to process model parameter initial value and bounds
@@ -28,14 +33,17 @@
# * Support read model initial parameter values from input file.
#
# TODO:
-# * to allow restrict the range of parameters / just fix it
+# * calculate fitting parameter's standard deviation
+# * to normalize fitting paramters to be the same order of magnitude
+# for better minimization
+# Ref: http://stackoverflow.com/questions/21369139/normalization-for-optimization-in-python
#
from __future__ import print_function, division
-__version__ = "0.4.0"
-__date__ = "2015/06/06"
+__version__ = "0.5.0"
+__date__ = "2015/06/07"
import numpy as np
from scipy.optimize import curve_fit, minimize
@@ -49,6 +57,8 @@ import argparse
# modes of to cut data
CUT_POINT = 'CUT_POINT'
CUT_RADIUS = 'CUT_RADIUS'
+# default minimize method
+MINIMIZE_METHOD = 'L-BFGS-B'
def beta_model(r, s0, rc, beta, c):
@@ -62,6 +72,15 @@ def calc_chisq(func, xdata, ydata, yerrdata, *args):
"""
Calculate the chi-squared values for the given function according
to the provided data points.
+
+ Arguments:
+ xdata: x values of data points
+ ydata: y values of data points
+ yerrdata: y standard deviation values
+ args: additional arguments for 'func'
+
+ Return:
+ chi-squared value
"""
xdata = np.array(xdata)
ydata = np.array(ydata)
@@ -69,46 +88,29 @@ def calc_chisq(func, xdata, ydata, yerrdata, *args):
return np.sum(((ydata - func(xdata, *args)) / yerrdata) ** 2)
-def fit_model(func, xdata, ydata, yerrdata, p0,
- cutmode=CUT_POINT, cutvalue=0):
+def fit_model(func, xdata, ydata, yerrdata, p0):
"""
Fit the provided data with the beta model.
Arguments:
p0: initial values for the parameters of beta model
- cutmode: 'point' / 'radius'; ignore data by number of data points,
- or by radius value less than the given value
- cutvalue: the cut limit
Return:
- (popt, pcov, infodict)
+ (popt, infodict)
popt: optimal values for the parameters
- pcov: 2d array; the estimated covariance of popt
infodict:
* fvec: the function evaluated at the output parameters
* dof: degree of freedom
* chisq: chi-squared
* perr: one standard deviation errors on the parameters
"""
- if cutmode == CUT_POINT:
- xdata2 = xdata[cutvalue:]
- ydata2 = ydata[cutvalue:]
- yerrdata2 = yerrdata[cutvalue:]
- elif cutmode == CUT_RADIUS:
- ii = xdata >= cutvalue
- xdata2 = xdata[ii]
- ydata2 = ydata[ii]
- yerrdata2 = yerrdata[ii]
- else:
- raise ValueError('Unknown cut mode: %s' % cutmode)
- popt, pcov = curve_fit(func, xdata2, ydata2,
- p0=p0, sigma=yerrdata2)
+ popt, pcov = curve_fit(func, xdata, ydata, p0=p0, sigma=yerrdata)
# the function evaluated at the output parameters
fvec = lambda x: func(x, *popt)
# degree of freedom
- dof = len(xdata2) - len(popt)
+ dof = len(xdata) - len(popt)
# chi squared
- chisq = np.sum(((ydata2 - fvec(xdata2)) / yerrdata2) ** 2)
+ chisq = np.sum(((ydata - fvec(xdata)) / yerrdata) ** 2)
# one standard deviation errors on the parameters
perr = np.sqrt(np.diag(pcov))
infodict = {
@@ -117,7 +119,84 @@ def fit_model(func, xdata, ydata, yerrdata, p0,
'chisq': chisq,
'perr': perr
}
- return (popt, pcov, infodict)
+ return (popt, infodict)
+
+
+def fit_model_bounds(func, xdata, ydata, yerrdata, p0=None, bounds=None,
+ options=None):
+ """
+ Fit the provided data with the beta model.
+
+ Arguments:
+ p0: initial values for the parameters of beta model
+ bounds: (min, max) pairs for each parameter bound
+ options: a dict of solver options (=> minimize: options)
+
+ Return:
+ (popt, infodict)
+ popt: optimal values for the parameters
+ infodict:
+ * fvec: the function evaluated at the output parameters
+ * dof: degree of freedom
+ * chisq: chi-squared
+ * perr: one standard deviation errors on the parameters
+ """
+ # objective function to be minimized, required format of 'f(x, *args)'
+ f = lambda x: calc_chisq(func, xdata, ydata, yerrdata, *x)
+ # minimize the given function using 'scipy.optimize.minimize' with bounds
+ res = minimize(f, p0, method=MINIMIZE_METHOD, bounds=bounds,
+ options=options)
+ popt = res.x
+ print("DEBUG: minimization results:\n", res, file=sys.stderr)
+
+ # check minimization results
+ if not res.success:
+ print("*** WARNING: minimization exited with error: ***\n" + \
+ "*** %s ***" % res.message, file=sys.stderr)
+
+ # the function evaluated at the output parameters
+ fvec = lambda x: func(x, *popt)
+ # degree of freedom
+ dof = len(xdata) - len(popt)
+ # chi squared
+ chisq = res.fun
+ # one standard deviation errors on the parameters
+ perr = popt * 0.0 # FIXME
+ infodict = {
+ 'fvec': fvec,
+ 'dof': dof,
+ 'chisq': chisq,
+ 'perr': perr
+ }
+ return (popt, infodict)
+
+
+def cut_data(xdata, ydata, yerrdata, cutmode=CUT_POINT, cutvalue=0):
+ """
+ Cut the given data with the provided cutmode and cutvalue,
+ return the cut data.
+
+ Arguments:
+ xdata, ydata, yerrdata: input data (x, y, yerr)
+ cutmode: 'point' / 'radius'; ignore data by number of data points,
+ or by radius value less than the given value
+ cutvalue: the cut limit
+
+ Return:
+ (xdata_cut, ydata_cut, yerrdata_cut)
+ """
+ if cutmode == CUT_POINT:
+ xdata_cut = xdata[cutvalue:]
+ ydata_cut = ydata[cutvalue:]
+ yerrdata_cut = yerrdata[cutvalue:]
+ elif cutmode == CUT_RADIUS:
+ ii = xdata >= cutvalue
+ xdata_cut = xdata[ii]
+ ydata_cut = ydata[ii]
+ yerrdata_cut = yerrdata[ii]
+ else:
+ raise ValueError('Unknown cut mode: %s' % cutmode)
+ return (xdata_cut, ydata_cut, yerrdata_cut)
def get_parameter(pstring):
@@ -172,7 +251,7 @@ def main():
epilog="Version: %s (%s)" % (__version__, __date__))
parser.add_argument("-v", "--verbose", dest="verbose",
action="store_true", default=False,
- help="show verbose/debug information")
+ help="show verbose/debug information (False)")
parser.add_argument("-V", "--version", action="version",
version="%(prog)s " + "%s (%s)" % (__version__, __date__))
parser.add_argument("-i", "--infile",
@@ -189,6 +268,9 @@ def main():
# c_0 = init_value, lower_limit, upper_limit""")
parser.add_argument("-o", "--outfile", dest="outfilename",
help="output file to store the fitted data")
+ parser.add_argument("-b", "--bounds", dest="bounds",
+ action="store_true", default=False,
+ help="whether apply paramenter bounds (False)")
parser.add_argument("-c", "--cut-point",
dest="cut_point", metavar="N", type=int, default=0,
help="number of inner-most data points to be ignored")
@@ -226,6 +308,8 @@ def main():
cutvalue = args.cut_radius
if args.verbose:
+ print('DEBUG: apply parameter bounds: %s' % args.bounds,
+ file=sys.stderr)
print("DEBUG: cutmode: %s, cutvalue: %s" % (cutmode, cutvalue))
# input data list
@@ -315,17 +399,32 @@ def main():
rerr_data = np.array(rerr_data)
s_data = np.array(s_data)
serr_data = np.array(serr_data)
+ # cut data
+ r_data_cut, s_data_cut, serr_data_cut = cut_data(r_data, s_data,
+ serr_data, cutmode=cutmode, cutvalue=cutvalue)
+
# model parameters
par_names = ["s0", "rc", "beta", "c"]
# initial values
- par_0 = [s0_0, rc_0, beta_0, c_0]
+ par_0 = np.array([s0_0, rc_0, beta_0, c_0])
# parameter bounds
par_bounds = [(s0_lower, s0_upper), (rc_lower, rc_upper),
(beta_lower, beta_upper), (c_lower, c_upper)]
+ # set eps for the parameters (required for the minimize method,
+ # otherwise error 'ABNORMAL_TERMINATION_IN_LNSRCH' occurs, which
+ # may due to the different order of magnitude of each parameters)
+ par_eps = par_0 * 1e-4
+
+ if args.bounds:
+ ## 'fit_model_bounds' to perform fitting with bounds
+ par_fit, infodict = fit_model_bounds(beta_model, r_data_cut,
+ s_data_cut, serr_data_cut, p0=par_0, bounds=par_bounds,
+ options={'eps': par_eps})
+ else:
+ # 'fit_model' do not support parameter bounds
+ par_fit, infodict = fit_model(beta_model, r_data_cut,
+ s_data_cut, serr_data_cut, p0=par_0)
- ## 'fit_beta_model' do not support parameter bounds
- par_fit, cov_fit, infodict = fit_model(beta_model, r_data, s_data,
- serr_data, p0=par_0, cutmode=cutmode, cutvalue=cutvalue)
fvec = infodict['fvec']
dof = infodict['dof']
chisq = infodict['chisq']