aboutsummaryrefslogtreecommitdiffstats
path: root/astro/fitting
diff options
context:
space:
mode:
Diffstat (limited to 'astro/fitting')
-rwxr-xr-xastro/fitting/fit_betasbp_cut.py458
1 files changed, 458 insertions, 0 deletions
diff --git a/astro/fitting/fit_betasbp_cut.py b/astro/fitting/fit_betasbp_cut.py
new file mode 100755
index 0000000..2d2931e
--- /dev/null
+++ b/astro/fitting/fit_betasbp_cut.py
@@ -0,0 +1,458 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+#
+# To fitting the given SBP data with the following beta model:
+# s = s0 * pow((1.0+(r/rc)^2), 0.5-3*beta) + c
+# And this tool supports the following two requirements for the fitting:
+# (1) ignore the specified number of inner-most data points;
+# (2) ignore the data points whose radius value less than the given value.
+#
+# Aaron LI
+# 2015/05/29
+#
+# Changelogs:
+# v0.5.1, 2015/06/07, Aaron LI
+# * fixed 'dof' calculation with 'n-p-1'
+# * fixed 'par_eps' calculation/configuration
+# v0.5.0, 2015/06/07, Aaron LI
+# * added 'fit_model_bounds' using 'scipy.optimize.minimize' to
+# perform function minimization with bounds
+# * split the data cut section to function 'cut_data'
+# * added argument 'options' to 'fit_model_bounds'
+# v0.4.0, 2015/06/06, Aaron LI
+# * replace getopt with 'argparse'
+# * added 'get_parameter' to process model parameter initial value and bounds
+# * support read parameter bounds from input file
+# * added options '--s0', '--rc', '--beta', '--const' to get paramter
+# initial values and bounds
+# * renamed 'fit_beta_model' to 'fit_model', and added argument 'func' to
+# support other models
+# v0.3.0, 2015/06/02, Aaron LI
+# * can output chi-squared and dof values
+# * can output one standard deviation errors on the parameters
+# v0.2.0, 2015/05/30:
+# * Added option '-n' / '--no-radius' to ignore radius less than the
+# given value.
+# * Support read model initial parameter values from input file.
+#
+# TODO:
+# * calculate fitting parameter's confidence interval / confidence bounds
+# * to normalize fitting paramters to be the same order of magnitude
+# for better minimization
+# Ref: http://stackoverflow.com/questions/21369139/normalization-for-optimization-in-python
+#
+
+
+from __future__ import print_function, division
+
+__version__ = "0.5.1"
+__date__ = "2015/06/07"
+
+import numpy as np
+from scipy.optimize import curve_fit, minimize
+
+import os
+import sys
+import re
+import argparse
+
+
+# modes of to cut data
+CUT_POINT = 'CUT_POINT'
+CUT_RADIUS = 'CUT_RADIUS'
+# default minimize method
+MINIMIZE_METHOD = 'L-BFGS-B'
+
+
+def beta_model(r, s0, rc, beta, c):
+ """
+ SBP beta model, with a constant background.
+ """
+ return s0 * np.power((1.0+(r/rc)**2), 0.5-3*beta) + c
+
+
+def calc_chisq(func, xdata, ydata, yerrdata, *args):
+ """
+ Calculate the chi-squared values for the given function according
+ to the provided data points.
+
+ Arguments:
+ xdata: x values of data points
+ ydata: y values of data points
+ yerrdata: y standard deviation values
+ args: additional arguments for 'func'
+
+ Return:
+ chi-squared value
+ """
+ xdata = np.array(xdata)
+ ydata = np.array(ydata)
+ yerrdata = np.array(yerrdata)
+ return np.sum(((ydata - func(xdata, *args)) / yerrdata) ** 2)
+
+
+def fit_model(func, xdata, ydata, yerrdata, p0):
+ """
+ Fit the provided data with the beta model.
+
+ Arguments:
+ p0: initial values for the parameters of beta model
+
+ Return:
+ (popt, infodict)
+ popt: optimal values for the parameters
+ infodict:
+ * fvec: the function evaluated at the output parameters
+ * dof: degree of freedom
+ * chisq: chi-squared
+ * perr: one standard deviation errors on the parameters
+ """
+ popt, pcov = curve_fit(func, xdata, ydata, p0=p0, sigma=yerrdata)
+ # the function evaluated at the output parameters
+ fvec = lambda x: func(x, *popt)
+ # degree of freedom
+ dof = len(xdata) - len(popt) - 1
+ # chi squared
+ chisq = np.sum(((ydata - fvec(xdata)) / yerrdata) ** 2)
+ # one standard deviation errors on the parameters
+ perr = np.sqrt(np.diag(pcov))
+ infodict = {
+ 'fvec': fvec,
+ 'dof': dof,
+ 'chisq': chisq,
+ 'perr': perr
+ }
+ return (popt, infodict)
+
+
+def fit_model_bounds(func, xdata, ydata, yerrdata, p0=None,
+ bounds=None, options=None):
+ """
+ Fit the provided data with the beta model, and apply parameter
+ bounds requirements.
+ Using 'scipy.optimize.minimize'.
+
+ Arguments:
+ p0: initial values for the parameters of beta model
+ bounds: (min, max) pairs for each parameter bound
+ options: a dict of solver options (=> minimize: options)
+
+ Return:
+ (popt, infodict)
+ popt: optimal values for the parameters
+ infodict:
+ * fvec: the function evaluated at the output parameters
+ * dof: degree of freedom
+ * chisq: chi-squared
+ * perr: one standard deviation errors on the parameters
+ """
+ # objective function to be minimized, required format of 'f(x, *args)'
+ f = lambda p: calc_chisq(func, xdata, ydata, yerrdata, *p)
+ # minimize the given function using 'scipy.optimize.minimize' with bounds
+ res = minimize(f, p0, method=MINIMIZE_METHOD, bounds=bounds,
+ options=options)
+ popt = res.x
+ #print("DEBUG: minimization results:\n", res, file=sys.stderr)
+
+ # check minimization results
+ if not res.success:
+ print("*** WARNING: minimization exited with error: ***\n" + \
+ "*** %s ***" % res.message, file=sys.stderr)
+
+ # the function evaluated at the output parameters
+ fvec = lambda x: func(x, *popt)
+ # degree of freedom
+ dof = len(xdata) - len(popt) - 1
+ # chi squared
+ chisq = res.fun
+ # one standard deviation errors on the parameters
+ perr = popt * 0.0 # FIXME
+ infodict = {
+ 'fvec': fvec,
+ 'dof': dof,
+ 'chisq': chisq,
+ 'perr': perr
+ }
+ return (popt, infodict)
+
+
+def cut_data(xdata, ydata, yerrdata, cutmode=CUT_POINT, cutvalue=0):
+ """
+ Cut the given data with the provided cutmode and cutvalue,
+ return the cut data.
+
+ Arguments:
+ xdata, ydata, yerrdata: input data (x, y, yerr)
+ cutmode: 'point' / 'radius'; ignore data by number of data points,
+ or by radius value less than the given value
+ cutvalue: the cut limit
+
+ Return:
+ (xdata_cut, ydata_cut, yerrdata_cut)
+ """
+ if cutmode == CUT_POINT:
+ xdata_cut = xdata[cutvalue:]
+ ydata_cut = ydata[cutvalue:]
+ yerrdata_cut = yerrdata[cutvalue:]
+ elif cutmode == CUT_RADIUS:
+ ii = xdata >= cutvalue
+ xdata_cut = xdata[ii]
+ ydata_cut = ydata[ii]
+ yerrdata_cut = yerrdata[ii]
+ else:
+ raise ValueError('Unknown cut mode: %s' % cutmode)
+ return (xdata_cut, ydata_cut, yerrdata_cut)
+
+
+def get_parameter(pstring):
+ """
+ Process the parameter string of the following format, and return
+ the initial value, lower limit, and upper limit.
+ "init_value"
+ "init_value lower upper"
+ "init_value,lower,upper"
+ If want to ignore the lower/upper limit, use 'None' (case-insensitive),
+ and the None is returned.
+ """
+ parameters = pstring.replace(',', ' ').split()
+ if len(parameters) == 1:
+ init_value = float(parameters[0])
+ return (init_value, None, None)
+ elif len(parameters) == 3:
+ init_value = float(parameters[0])
+ if parameters[1].upper() == 'NONE':
+ lower_value = None
+ else:
+ lower_value = float(parameters[1])
+ if parameters[2].upper() == 'NONE':
+ upper_value = None
+ else:
+ upper_value = float(parameters[2])
+ return (init_value, lower_value, upper_value)
+ else:
+ raise ValueError('Invalid parameter format: %s' % pstring)
+
+
+def main():
+ # options
+ infile = None
+ outfilename= None
+ cutmode = CUT_POINT # ignore data by number of data points
+ cutvalue = 0 # do not ignore any data by default
+ # initial values for the four parameters of the beta model
+ s0_0 = 1.0e-7
+ rc_0 = 10.0
+ beta_0 = 0.6
+ c_0 = 0.0
+ # default bounds for the four parameters
+ s0_lower, s0_upper = None, None
+ rc_lower, rc_upper = None, None
+ beta_lower, beta_upper = None, None
+ c_lower, c_upper = None, None
+
+ # parser for command line options and arguments
+ parser = argparse.ArgumentParser(
+ description="Fitting provided data with the beta model.",
+ epilog="Version: %s (%s)" % (__version__, __date__))
+ parser.add_argument("-v", "--verbose", dest="verbose",
+ action="store_true", default=False,
+ help="show verbose/debug information (False)")
+ parser.add_argument("-V", "--version", action="version",
+ version="%(prog)s " + "%s (%s)" % (__version__, __date__))
+ parser.add_argument("-i", "--infile",
+ dest="infile", required=True,
+ help="""input data file with the following 4 or 3 columns:
+ [radius radius_err brightness brightness_err],
+ [radius brightness brightness_err].
+ Note: The initial values and lower/upper limits
+ for the beta models can also be provided with the
+ following syntax:
+ # s0_0 = init_value, lower_limit, upper_limit
+ # rc_0 = init_value, lower_limit, upper_limit
+ # beta_0 = init_value, lower_limit, upper_limit
+ # c_0 = init_value, lower_limit, upper_limit""")
+ parser.add_argument("-o", "--outfile", dest="outfilename",
+ help="output file to store the fitted data")
+ parser.add_argument("-b", "--bounds", dest="bounds",
+ action="store_true", default=False,
+ help="whether apply paramenter bounds (False)")
+ parser.add_argument("-c", "--cut-point",
+ dest="cut_point", metavar="N", type=int, default=0,
+ help="number of inner-most data points to be ignored")
+ parser.add_argument("-n", "--no-radius",
+ dest="cut_radius", metavar="RADIUS", type=float, default=0.0,
+ help="ignore data points with smaller radius")
+ parser.add_argument("--s0", dest="s0",
+ metavar="init_value,lower,upper",
+ help="initial value and lower/upper limits for parameter s0. " + \
+ "Use 'none' (case-insensitive) to ignore the limit")
+ parser.add_argument("--rc", dest="rc",
+ metavar="init_value,lower,upper",
+ help="initial value and lower/upper limits for parameter rc. " + \
+ "Use 'none' (case-insensitive) to ignore the limit")
+ parser.add_argument("--beta", dest="beta",
+ metavar="init_value,lower,upper",
+ help="initial value and lower/upper limits for parameter beta. " + \
+ "Use 'none' (case-insensitive) to ignore the limit")
+ parser.add_argument("--const", dest="const",
+ metavar="init_value,lower,upper",
+ help="initial value and lower/upper limits for parameter const. " + \
+ "Use 'none' (case-insensitive) to ignore the limit")
+
+ args = parser.parse_args()
+ if args.outfilename:
+ outfile = open(args.outfilename, 'w')
+ else:
+ outfile = sys.stdout
+ # cut mode and value
+ if args.cut_point:
+ cutmode = CUT_POINT
+ cutvalue = args.cut_point
+ elif args.cut_radius:
+ cutmode = CUT_RADIUS
+ cutvalue = args.cut_radius
+
+ if args.verbose:
+ print('DEBUG: apply parameter bounds: %s' % args.bounds,
+ file=sys.stderr)
+ print("DEBUG: cutmode: %s, cutvalue: %s" % (cutmode, cutvalue))
+
+ # input data list
+ r_data = []
+ rerr_data = []
+ s_data = []
+ serr_data = []
+
+ # regex to match initial parameter names, blank line, and comment line
+ re_blank = re.compile(r'^\s*$')
+ re_comment = re.compile(r'^\s*#')
+ re_s0 = re.compile(r'^\s*#\s*s0_0\s*[:=]')
+ re_rc = re.compile(r'^\s*#\s*rc_0\s*[:=]')
+ re_beta = re.compile(r'^\s*#\s*beta_0\s*[:=]')
+ re_c = re.compile(r'^\s*#\s*c_0\s*[:=]')
+ for line in open(args.infile, 'r'):
+ if re_s0.match(line):
+ # read 's0_0': initial value for parameter 's0'
+ s0_pstring = re_s0.split(line)[1]
+ s0_0, s0_lower, s0_upper = get_parameter(s0_pstring)
+ elif re_rc.match(line):
+ # read 'rc_0': initial value for parameter 'rc'
+ rc_pstring = re_rc.split(line)[1]
+ rc_0, rc_lower, rc_upper = get_parameter(rc_pstring)
+ elif re_beta.match(line):
+ # read 'beta_0': initial value for parameter 'beta'
+ beta_pstring = re_beta.split(line)[1]
+ beta_0, beta_lower, beta_upper = get_parameter(beta_pstring)
+ elif re_c.match(line):
+ # read 'c_0': initial value for parameter 'c'
+ c_pstring = re_c.split(line)[1]
+ c_0, c_lower, c_upper = get_parameter(c_pstring)
+ elif re_blank.match(line):
+ # ignore blank line
+ continue
+ elif re_comment.match(line):
+ # ignore comment line
+ continue
+ else:
+ try:
+ r, rerr, s, serr = map(float, line.split())
+ except ValueError:
+ try:
+ r, s, serr = map(float, line.split())
+ rerr = 0.0
+ except ValueError:
+ print('ERROR: unsupported input data format',
+ file=sys.stderr)
+ sys.exit(21)
+ r_data.append(r)
+ rerr_data.append(rerr)
+ s_data.append(s)
+ serr_data.append(serr)
+
+ if args.verbose:
+ print('DEBUG: infile: s0_0 = %g (%s, %s)' % \
+ (s0_0, s0_lower, s0_upper), file=sys.stderr)
+ print('DEBUG: infile: rc_0 = %g (%s, %s)' % \
+ (rc_0, rc_lower, rc_upper), file=sys.stderr)
+ print('DEBUG: infile: beta_0 = %g (%s, %s)' % \
+ (beta_0, beta_lower, beta_upper), file=sys.stderr)
+ print('DEBUG: infile: c_0 = %g (%s, %s)' % \
+ (c_0, c_lower, c_upper), file=sys.stderr)
+
+ # get parameter initial values and bounds from command line arguments
+ if args.s0:
+ s0_0, s0_lower, s0_upper = get_parameter(args.s0)
+ if args.rc:
+ rc_0, rc_lower, rc_upper = get_parameter(args.rc)
+ if args.beta:
+ beta_0, beta_lower, beta_upper = get_parameter(args.beta)
+ if args.const:
+ c_0, c_lower, c_upper = get_parameter(args.const)
+
+ if args.verbose:
+ print('DEBUG: final: s0_0 = %g (%s, %s)' % \
+ (s0_0, s0_lower, s0_upper), file=sys.stderr)
+ print('DEBUG: final: rc_0 = %g (%s, %s)' % \
+ (rc_0, rc_lower, rc_upper), file=sys.stderr)
+ print('DEBUG: final: beta_0 = %g (%s, %s)' % \
+ (beta_0, beta_lower, beta_upper), file=sys.stderr)
+ print('DEBUG: final: c_0 = %g (%s, %s)' % \
+ (c_0, c_lower, c_upper), file=sys.stderr)
+
+ # convert to numpy array
+ r_data = np.array(r_data)
+ rerr_data = np.array(rerr_data)
+ s_data = np.array(s_data)
+ serr_data = np.array(serr_data)
+ # cut data
+ r_data_cut, s_data_cut, serr_data_cut = cut_data(r_data, s_data,
+ serr_data, cutmode=cutmode, cutvalue=cutvalue)
+
+ # model parameters
+ par_names = ["s0", "rc", "beta", "c"]
+ # initial values
+ par_0 = np.array([s0_0, rc_0, beta_0, c_0])
+ # parameter bounds
+ par_bounds = np.array([(s0_lower, s0_upper), (rc_lower, rc_upper),
+ (beta_lower, beta_upper), (c_lower, c_upper)])
+ # set eps for the parameters (required for the minimize method,
+ # otherwise error 'ABNORMAL_TERMINATION_IN_LNSRCH' occurs, which
+ # may due to the different order of magnitude of each parameters)
+ par_eps = np.absolute(par_0) * 1e-3
+ par_eps[ par_eps<1e-15 ] = 1e-15 # set par_eps >= 1e-14
+ if args.verbose:
+ print("DEBUG: parameters eps:\n", par_eps, file=sys.stderr)
+
+ if args.bounds:
+ ## 'fit_model_bounds' to perform fitting with bounds
+ par_fit, infodict = fit_model_bounds(beta_model, r_data_cut,
+ s_data_cut, serr_data_cut, p0=par_0, bounds=par_bounds,
+ options={'eps': par_eps})
+ else:
+ # 'fit_model' do not support parameter bounds
+ par_fit, infodict = fit_model(beta_model, r_data_cut,
+ s_data_cut, serr_data_cut, p0=par_0)
+
+ fvec = infodict['fvec']
+ dof = infodict['dof']
+ chisq = infodict['chisq']
+ perr = infodict['perr']
+
+ print("# beta-model fitting results:", file=outfile)
+ print("# s(r) = s0 * pow((1.0+(r/rc)^2), 0.5-3*beta) + c", file=outfile)
+ for i in range(len(par_names)):
+ print("# %s = %g +/- %g" % (par_names[i], par_fit[i], perr[i]),
+ file=outfile)
+ print("# chisq / dof = %g / %g = %g" % (chisq, dof, chisq/dof),
+ file=outfile)
+ print("# radius(input) brightness(fitted)", file=outfile)
+ for i in range(len(r_data)):
+ print("%g %g" % (r_data[i], fvec(r_data[i])), file=outfile)
+
+ if args.outfilename:
+ outfile.close()
+
+
+if __name__ == '__main__':
+ main()
+