aboutsummaryrefslogtreecommitdiffstats
path: root/astro
diff options
context:
space:
mode:
Diffstat (limited to 'astro')
-rwxr-xr-xastro/fitting/fit_beta_model.py133
-rwxr-xr-xastro/fitting/fit_betasbp_cut.py237
2 files changed, 237 insertions, 133 deletions
diff --git a/astro/fitting/fit_beta_model.py b/astro/fitting/fit_beta_model.py
deleted file mode 100755
index aaf5781..0000000
--- a/astro/fitting/fit_beta_model.py
+++ /dev/null
@@ -1,133 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Fitting data according to (SBP) beta model.
-#
-# Aaron LI
-# 2015/05/29
-
-
-import numpy as np
-from scipy.optimize import curve_fit
-
-import os
-import sys
-import getopt
-import re
-
-
-USAGE = """Usage:
- %(prog)s [ -h -c -o outfile ] -i infile
-
-Required arguments:
- -i, --infile
- input data file with the following *four* columns:
- r, rerr, s, serr
- -o, --outfile
- output file to store the fitted data
- if not provided, then print results to screen
-
-Optional arguments:
- -h, --help
- print this usage
- -c, --cut
- accept an integer number
- ignore the inner-most n data points
-""" % { 'prog': os.path.basename(sys.argv[0]) }
-
-
-def usage():
- print(USAGE)
-
-
-def beta_model(r, s0, rc, beta, c):
- """
- SBP beta model.
- """
- return s0 * np.power((1.0+(r/rc)**2), 0.5-3*beta) + c
-
-
-def main():
- infile = None
- outfilename= None
- cut = 0
-
- try:
- opts, args = getopt.getopt(sys.argv[1:], 'c:hi:o:',
- ['cut=', 'help', 'infile=', 'outfile='])
- except getopt.GetoptError as e:
- print(e, file=sys.stderr)
- usage()
- sys.exit(2)
-
- for opt, arg in opts:
- if opt in ('-h', '--help'):
- usage()
- sys.exit(0)
- elif opt in ('-i', '--infile'):
- infile = arg
- elif opt in ('-o', '--outfile'):
- outfilename = arg
- elif opt in ('-c', '--cut'):
- cut = int(arg)
- else:
- assert False, 'unhandled option'
-
- if not infile:
- print('ERROR: --infile required', file=sys.stderr)
- sys.exit(11)
- if outfilename:
- outfile = open(outfilename, 'w')
- else:
- outfile = sys.stdout
-
- # input data list
- r_data = []
- rerr_data = []
- s_data = []
- serr_data = []
-
- for line in open(infile, 'r'):
- if re.match(r'^\s*#', line):
- continue
- if re.match(r'^\s*$', line):
- continue
- r, rerr, s, serr = map(float, line.split())
- r_data.append(r)
- rerr_data.append(rerr)
- s_data.append(s)
- serr_data.append(serr)
-
- # convert to numpy array
- r_data = np.array(r_data)
- rerr_data = np.array(rerr_data)
- s_data = np.array(s_data)
- serr_data = np.array(serr_data)
-
- # initial parameter values for beta model
- s0_0 = 1.0e-7
- rc_0 = 10.0
- beta_0 = 0.6
- c_0 = 0.0
- par_0 = [s0_0, rc_0, beta_0, c_0]
-
- par_fit, cov_fit = curve_fit(beta_model, r_data[cut:], s_data[cut:],
- p0=par_0, sigma=serr_data[cut:])
-
- s_fitted = beta_model(r_data, *par_fit)
-
- print("# beta-model fitting results:", file=outfile)
- print("# s0 * power((1.0+(r/rc)**2), 0.5-3*beta) + c", file=outfile)
- print("# s0 = %g, rc = %g, beta = %g, c = %g" % tuple(par_fit),
- file=outfile)
- print("# radius(input) brightness(fitted)", file=outfile)
- for i in range(len(s_fitted)):
- print("%g %g" % (r_data[i], s_fitted[i]), file=outfile)
-
- if not outfilename:
- outfile.close()
-
-
-if __name__ == '__main__':
- main()
-
diff --git a/astro/fitting/fit_betasbp_cut.py b/astro/fitting/fit_betasbp_cut.py
new file mode 100755
index 0000000..4b530f4
--- /dev/null
+++ b/astro/fitting/fit_betasbp_cut.py
@@ -0,0 +1,237 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+#
+# To fitting the given SBP data with the following beta model:
+# s = s0 * pow((1.0+(r/rc)^2), 0.5-3*beta) + c
+# And this tool supports the following two requirements for the fitting:
+# (1) ignore the specified number of inner-most data points;
+# (2) ignore the data points whose radius value less than the given value.
+#
+# Aaron LI
+# 2015/05/29
+#
+# Changelogs:
+# 2015/05/30:
+# * Added option '-n' / '--no-radius' to ignore radius less than the
+# given value.
+# * Support read model initial parameter values from input file.
+#
+
+
+from __future__ import print_function, division
+
+import numpy as np
+from scipy.optimize import curve_fit
+
+import os
+import sys
+import getopt
+import re
+
+
+# modes of to cut data
+CUT_POINT = 'CUT_POINT'
+CUT_RADIUS = 'CUT_RADIUS'
+
+
+def beta_model(r, s0, rc, beta, c):
+ """
+ SBP beta model, with a constant background.
+ """
+ return s0 * np.power((1.0+(r/rc)**2), 0.5-3*beta) + c
+
+
+def fit_beta_model(xdata, ydata, yerrdata, p0,
+ cutmode=CUT_POINT, cutvalue=0):
+ """
+ Fit the provided data with the beta model.
+
+ Arguments:
+ p0: initial values for the parameters of beta model
+ cutmode: 'point' / 'radius'; ignore data by number of data points,
+ or by radius value less than the given value
+ cutvalue: the cut limit
+
+ Return:
+ [fitted_par, fitted_cov, fitted_model_value]
+ """
+ if cutmode == CUT_POINT:
+ xdata2 = xdata[cutvalue:]
+ ydata2 = ydata[cutvalue:]
+ yerrdata2 = yerrdata[cutvalue:]
+ elif cutmode == CUT_RADIUS:
+ ii = xdata >= cutvalue
+ xdata2 = xdata[ii]
+ ydata2 = ydata[ii]
+ yerrdata2 = yerrdata[ii]
+ else:
+ raise ValueError('Unknown cut mode: %s' % cutmode)
+ par_fit, cov_fit = curve_fit(beta_model, xdata2, ydata2,
+ p0=p0, sigma=yerrdata2)
+ y_fit = beta_model(xdata, *par_fit)
+ return (par_fit, cov_fit, y_fit)
+
+
+def main():
+ # options
+ infile = None
+ outfilename= None
+ cutmode = CUT_POINT # ignore data by number of data points
+ cutvalue = 0 # do not ignore any data by default
+ # initial values for the four parameters of the beta model
+ s0_0 = 1.0e-7
+ rc_0 = 10.0
+ beta_0 = 0.6
+ c_0 = 0.0
+ # debug
+ verbose = False
+
+ try:
+ opts, args = getopt.getopt(sys.argv[1:], 'c:hi:n:o:v',
+ ['cut-point=', 'help', 'infile=', 'no-radius=',
+ 'outfile=', 'verbose'])
+ except getopt.GetoptError as e:
+ print(e, file=sys.stderr)
+ usage()
+ sys.exit(2)
+
+ for opt, arg in opts:
+ if opt in ('-h', '--help'):
+ usage()
+ sys.exit(0)
+ elif opt in ('-v', '--verbose'):
+ verbose = True
+ elif opt in ('-i', '--infile'):
+ infile = arg
+ elif opt in ('-o', '--outfile'):
+ outfilename = arg
+ elif opt in ('-c', '--cut-point'):
+ cutvalue = int(arg)
+ cutmode = CUT_POINT
+ elif opt in ('-n', '--no-radius'):
+ cutvalue = float(arg)
+ cutmode = CUT_RADIUS
+ else:
+ assert False, 'unhandled option'
+
+ if not infile:
+ print('ERROR: --infile required', file=sys.stderr)
+ sys.exit(11)
+ if outfilename:
+ outfile = open(outfilename, 'w')
+ else:
+ outfile = sys.stdout
+
+ # input data list
+ r_data = []
+ rerr_data = []
+ s_data = []
+ serr_data = []
+
+ # regex to match initial parameter names, blank line, and comment line
+ re_blank = re.compile(r'^\s*$')
+ re_comment = re.compile(r'^\s*#')
+ re_s0 = re.compile(r'^\s*#\s*s0_0\s*[:=]')
+ re_rc = re.compile(r'^\s*#\s*rc_0\s*[:=]')
+ re_beta = re.compile(r'^\s*#\s*beta_0\s*[:=]')
+ re_c = re.compile(r'^\s*#\s*c_0\s*[:=]')
+ for line in open(infile, 'r'):
+ if re_s0.match(line):
+ # read 's0_0': initial value for parameter 's0'
+ s0_0 = float(re_s0.split(line)[1])
+ elif re_rc.match(line):
+ # read 'rc_0': initial value for parameter 'rc'
+ rc_0 = float(re_rc.split(line)[1])
+ elif re_beta.match(line):
+ # read 'beta_0': initial value for parameter 'beta'
+ beta_0 = float(re_beta.split(line)[1])
+ elif re_c.match(line):
+ # read 'c_0': initial value for parameter 'c'
+ c_0 = float(re_c.split(line)[1])
+ elif re_blank.match(line):
+ # ignore blank line
+ continue
+ elif re_comment.match(line):
+ # ignore comment line
+ continue
+ else:
+ try:
+ r, rerr, s, serr = map(float, line.split())
+ except ValueError:
+ try:
+ r, s, serr = map(float, line.split())
+ rerr = 0.0
+ except ValueError:
+ print('ERROR: unsupported input data format',
+ file=sys.stderr)
+ sys.exit(21)
+ r_data.append(r)
+ rerr_data.append(rerr)
+ s_data.append(s)
+ serr_data.append(serr)
+
+ # convert to numpy array
+ r_data = np.array(r_data)
+ rerr_data = np.array(rerr_data)
+ s_data = np.array(s_data)
+ serr_data = np.array(serr_data)
+
+ if verbose:
+ print('DEBUG: s0_0 = %g, rc_0 = %g, beta_0 = %g, c_0 = %g' % \
+ (s0_0, rc_0, beta_0, c_0), file=sys.stderr)
+
+ par_0 = [s0_0, rc_0, beta_0, c_0]
+
+ par_fit, cov_fit, s_fit = fit_beta_model(r_data, s_data, serr_data,
+ p0=par_0, cutmode=cutmode, cutvalue=cutvalue)
+
+ print("# beta-model fitting results:", file=outfile)
+ print("# s(r) = s0 * pow((1.0+(r/rc)^2), 0.5-3*beta) + c", file=outfile)
+ print("# s0 = %g\n# rc = %g\n# beta = %g\n# c = %g" % tuple(par_fit),
+ file=outfile)
+ print("# radius(input) brightness(fitted)", file=outfile)
+ for i in range(len(s_fit)):
+ print("%g %g" % (r_data[i], s_fit[i]), file=outfile)
+
+ if outfilename:
+ outfile.close()
+
+
+USAGE = """Usage:
+ %(prog)s [ -h -c -o outfile ] -i infile
+
+Required arguments:
+ -i, --infile
+ input data file with the following *four* or *three* columns:
+ r, rerr, s, serr
+ r, s, serr
+ Note: the initial values for beta model paramters can also be
+ provided with the following syntax:
+ # s0_0 = ??
+ # rc_0 = ??
+ # beta_0 = ??
+ # c_0 = ??
+ -o, --outfile
+ output file to store the fitted data
+ if not provided, then print results to screen
+
+Optional arguments:
+ -h, --help
+ print this usage
+ -c, --cut-point
+ accept an integer number (n)
+ ignore the inner-most n data points
+ -n, --no-radius
+ accept a float number (r)
+ ignore the data points whose radius is less than r
+""" % { 'prog': os.path.basename(sys.argv[0]) }
+
+
+def usage():
+ print(USAGE)
+
+
+if __name__ == '__main__':
+ main()
+
+