diff options
Diffstat (limited to 'julia')
-rw-r--r-- | julia/anisodiff.jl | 101 | ||||
-rw-r--r-- | julia/calc_k_percentile.jl | 32 | ||||
-rw-r--r-- | julia/forcefield.jl | 87 | ||||
-rw-r--r-- | julia/ndgrid.jl | 52 | ||||
-rw-r--r-- | julia/scharr.jl | 37 |
5 files changed, 309 insertions, 0 deletions
diff --git a/julia/anisodiff.jl b/julia/anisodiff.jl new file mode 100644 index 0000000..e01f6db --- /dev/null +++ b/julia/anisodiff.jl @@ -0,0 +1,101 @@ +# -*- coding: utf-8 -*- +# +# ANISODIFF - Anisotropic diffusion +# +# Usage: +# diff = anisodiff(img, niter, kappa, lambda, option) +# +# Arguments: +# | img - input image (2D grayscale) +# | niter - number of iterations +# | kappa - conduction coefficient (gradient modulus threshold) +# | This parameter controls conduction as a function of gradient. +# | If kappa is low, small intensity gradients are able to block +# | conduction and hence diffusion across step edges. A large value +# | reduces the influence of intensity gradients on conduction. +# | lambda - integration constant for stability (0 <= lambda <= 0.25) +# | This parameter controls the diffusion speed, and you +# | usually want it at the maximum value of 0.25. +# | default value: 0.25 +# | option - conduction coefficient functions proposed by Perona & Malik: +# | 1: c(x, y, t) = exp(-(nablaI/kappa).^2) +# | privileges high-contrast edges over low-contrast ones +# | 2: c(x, y, t) = 1 ./ (1 + (nablaI/kappa).^2) +# | privileges wide regions over smaller ones +# | default value: 1 +# +# Returns: +# | diff - anisotropic diffused image +# +# Reference: +# [1] P. Perona and J. Malik. +# Scale-space and edge detection using ansotropic diffusion. +# IEEE Transactions on Pattern Analysis and Machine Intelligence, +# 12(7):629-639, July 1990. +# https://dx.doi.org/10.1109%2F34.56205 +# +# Credits: +# [1] Peter Kovesi +# pk@peterkovesi.com +# MATLAB and Octave Functions for Computer Vision and Image Processing +# http://www.peterkovesi.com/matlabfns/Spatial/anisodiff.m +# -- +# June 2000 original version +# March 2002 corrected diffusion eqn No 2. +# [2] Daniel Lopes +# Anisotropic Diffusion (Perona & Malik) +# http://www.mathworks.com/matlabcentral/fileexchange/14995-anisotropic-diffusion--perona---malik- +# +# +# Aaron LI <aaronly.me@gmail.com> +# 2015/07/17 +# + +include("calc_k_percentile.jl"); + +function anisodiff(img, niter, k=calc_k_percentile, lambda=0.25, option=1) + diff = float(img) + rows, cols = size(diff) + + for i = 1:niter + println("anisodiff - iteration: ", i) + + # Construct diffl which is the same as diff but + # has an extra padding of zeros around it. + diffl = zeros(rows+2, cols+2) + diffl[2:rows+1, 2:cols+1] = diff + + # North, South, East and West differences + deltaN = diffl[1:rows, 2:cols+1] - diff + deltaS = diffl[3:rows+2, 2:cols+1] - diff + deltaE = diffl[2:rows+1, 3:cols+2] - diff + deltaW = diffl[2:rows+1, 1:cols] - diff + + # Calculate the kappa + if isa(k, Function) + kappa = k(diff) + else + kappa = k + end + + println(" kappa: ", kappa) + + # Conduction + if option == 1 + cN = exp(-(deltaN/kappa).^2) + cS = exp(-(deltaS/kappa).^2) + cE = exp(-(deltaE/kappa).^2) + cW = exp(-(deltaW/kappa).^2) + elseif option == 2 + cN = 1 ./ (1 + (deltaN/kappa).^2) + cS = 1 ./ (1 + (deltaS/kappa).^2) + cE = 1 ./ (1 + (deltaE/kappa).^2) + cW = 1 ./ (1 + (deltaW/kappa).^2) + end + + diff += lambda * (cN.*deltaN + cS.*deltaS + cE.*deltaE + cW.*deltaW) + end + + return diff +end + diff --git a/julia/calc_k_percentile.jl b/julia/calc_k_percentile.jl new file mode 100644 index 0000000..36b15e1 --- /dev/null +++ b/julia/calc_k_percentile.jl @@ -0,0 +1,32 @@ +# -*- coding: utf-8 -*- +# +# Calculate the percentile of the gradient image, which +# used as the 'kappa' parameter of the anisotropic diffusion. +# +# Credits: +# [1] KAZE: nldiffusion_functions.cpp / compute_k_percentile() +# +# Aaron LI +# 2015/07/20 +# + +include("scharr.jl"); + +function calc_k_percentile(img, percent=0.7, nbins=300) + rows, cols = size(img) + # derivatives of the image + img_gx = scharr(img, 1, 0) + img_gy = scharr(img, 0, 1) + img_modg = sqrt(img_gx.^2 + img_gy.^2) + # histogram + hmax = maximum(img_modg) + hist_e, hist_counts = hist(reshape(img_modg, length(img_modg)), nbins) + hist_cum = cumsum(hist_counts) + # find the percent of the histogram percentile + npoints = sum(img_modg .> 0.0) + nthreshold = npoints * percent + k = sum(hist_cum .<= nthreshold) + kperc = (k == length(hist_cum)) ? 0.03 : (hmax * k / nbins) + return kperc +end + diff --git a/julia/forcefield.jl b/julia/forcefield.jl new file mode 100644 index 0000000..bf2c236 --- /dev/null +++ b/julia/forcefield.jl @@ -0,0 +1,87 @@ +# -*- coding: utf-8 -*- +# +# Force field transform with specified size of mask. +# +# Aaron LI +# 2015/07/19 +# + +# Make the specified sized force field mask. +# NOTE: the number of rows and cols must be odd. +function ff_mask(rows=5, cols=5) + rows % 2 == 1 || error("rows must be odd number") + cols % 2 == 1 || error("cols must be odd number") + mask = complex(zeros(rows, cols)) + for r = range(-div(rows, 2), rows) + for c = range(-div(cols, 2), cols) + i, j = r + div(rows+1, 2), c + div(cols+1, 2) + #@printf("(r,c) = (%d,%d); (i,j) = (%d,%d)\n", r, c, i, j) + d = c + r*im + if abs(d) < 1e-8 + mask[i, j] = 0.0 + else + mask[i, j] = d / abs(d)^3 + end + end + end + return mask / sum(abs(mask)) +end + + +# Padding image by specified number of rows and cols. +# Default padding mode: mirror +function pad_image(img, pad_rows, pad_cols, mode="mirror") + rows, cols = size(img) + rows_new, cols_new = rows + 2*pad_rows, cols + 2*pad_cols + img_pad = zeros(rows_new, cols_new) + img_pad[(pad_rows+1):(pad_rows+rows), (pad_cols+1):(pad_cols+cols)] = img + for r = 1:rows_new + for c = 1:cols_new + if mode == "mirror" + if r <= pad_rows + r_mirror = 2*(pad_rows+1) - r + elseif r <= pad_rows+rows + r_mirror = r + else + r_mirror = 2*(pad_rows+rows) - r + end + if c <= pad_cols + c_mirror = 2*(pad_cols+1) - c + elseif c <= pad_cols+cols + c_mirror = c + else + c_mirror = 2*(pad_cols+cols) - c + end + if (r_mirror, c_mirror) != (r, c) + #@printf("(%d,%d) <= (%d,%d)\n", r, c, r_mirror, c_mirror) + img_pad[r, c] = img_pad[r_mirror, c_mirror] + end + else + error("mode not supported") + end + end + end + return img_pad +end + + +# Perform force field transform for the image. +function ff_transform(img, mask, mode="mirror") + rows, cols = size(img) + mask_rows, mask_cols = size(mask) + pad_rows, pad_cols = div(mask_rows, 2), div(mask_cols, 2) + img_pad = pad_image(img, pad_rows, pad_cols) + # result images + ff_amplitudes = zeros(rows, cols) + ff_angles = zeros(rows, cols) + # calculate transformed values + for r = (pad_rows+1):(pad_rows+rows) + for c = (pad_cols+1):(pad_cols+cols) + force = sum(img_pad[r, c] * img_pad[(r-pad_rows):(r+pad_rows), (c-pad_cols):(c+pad_cols)] .* mask) + ff_amplitudes[r-pad_rows, c-pad_cols] = abs(force) + ff_angles[r-pad_rows, c-pad_cols] = angle(force) + end + end + return ff_amplitudes, ff_angles +end + diff --git a/julia/ndgrid.jl b/julia/ndgrid.jl new file mode 100644 index 0000000..688a246 --- /dev/null +++ b/julia/ndgrid.jl @@ -0,0 +1,52 @@ +# This file is a part of Julia. License is MIT: http://julialang.org/license + +ndgrid(v::AbstractVector) = copy(v) + +function ndgrid{T}(v1::AbstractVector{T}, v2::AbstractVector{T}) + m, n = length(v1), length(v2) + v1 = reshape(v1, m, 1) + v2 = reshape(v2, 1, n) + (repmat(v1, 1, n), repmat(v2, m, 1)) +end + +function ndgrid_fill(a, v, s, snext) + for j = 1:length(a) + a[j] = v[div(rem(j-1, snext), s)+1] + end +end + +function ndgrid{T}(vs::AbstractVector{T}...) + n = length(vs) + sz = map(length, vs) + out = ntuple(i->Array(T, sz), n) + s = 1 + for i=1:n + a = out[i]::Array + v = vs[i] + snext = s*size(a,i) + ndgrid_fill(a, v, s, snext) + s = snext + end + out +end + +meshgrid(v::AbstractVector) = meshgrid(v, v) + +function meshgrid{T}(vx::AbstractVector{T}, vy::AbstractVector{T}) + m, n = length(vy), length(vx) + vx = reshape(vx, 1, n) + vy = reshape(vy, m, 1) + (repmat(vx, m, 1), repmat(vy, 1, n)) +end + +function meshgrid{T}(vx::AbstractVector{T}, vy::AbstractVector{T}, + vz::AbstractVector{T}) + m, n, o = length(vy), length(vx), length(vz) + vx = reshape(vx, 1, n, 1) + vy = reshape(vy, m, 1, 1) + vz = reshape(vz, 1, 1, o) + om = ones(Int, m) + on = ones(Int, n) + oo = ones(Int, o) + (vx[om, :, oo], vy[:, on, oo], vz[om, on, :]) +end diff --git a/julia/scharr.jl b/julia/scharr.jl new file mode 100644 index 0000000..02daeb6 --- /dev/null +++ b/julia/scharr.jl @@ -0,0 +1,37 @@ +# -*- coding: utf-8 -*- +# +# Calculate the derivatives of an image using the Scharr operator +# of kernal size 3x3. +# +# References: +# [1] https://en.wikipedia.org/wiki/Sobel_operator +# [2] http://docs.opencv.org/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html +# +# Aaron LI +# 2015/07/20 +# + +# Calculate the derivatives of the image using the Scharr operator +# img - input image +# dx - order of the derivative x +# dy - order of the derivative y +function scharr(img, dx, dy) + rows, cols = size(img) + img_d = float(img) + (isa(dx, Int) && dx >= 0) || error("dx should be an integer >= 0") + (isa(dy, Int) && dy >= 0) || error("dy should be an integer >= 0") + # Scharr operator + Gy = [-3.0 -10.0 -3.0; 0.0 0.0 0.0; 3.0 10.0 3.0]; + Gx = Gy' + # calculate the derivatives using convolution + for i = 1:dx + img_d = conv2(img_d, Gx) + end + for i = 1:dy + img_d = conv2(img_d, Gy) + end + # FIXME: 'conv2' will increase the image size + rows_d, cols_d = size(img_d) + return img_d[(div(rows_d-rows, 2)+1):(div(rows_d-rows, 2)+rows), (div(cols_d-cols, 2)+1):(div(cols_d-cols, 2)+cols)] +end + |