aboutsummaryrefslogtreecommitdiffstats
path: root/matlab
diff options
context:
space:
mode:
Diffstat (limited to 'matlab')
-rw-r--r--matlab/radialpsd.m83
1 files changed, 83 insertions, 0 deletions
diff --git a/matlab/radialpsd.m b/matlab/radialpsd.m
new file mode 100644
index 0000000..cff4f9e
--- /dev/null
+++ b/matlab/radialpsd.m
@@ -0,0 +1,83 @@
+%
+% radialpsd - to calculate the radial power spectrum density
+% of the given 2d image
+%
+% Credits:
+% [1] Evan Ruzanski
+% Radially averaged power spectrum of 2D real-valued matrix
+% https://www.mathworks.com/matlabcentral/fileexchange/23636-radially-averaged-power-spectrum-of-2d-real-valued-matrix
+%
+% Arguments:
+% img - input 2d image (grayscale)
+% step - radius step between each consecutive two circles
+%
+% Return:
+% psd - vector contains the power at each frequency
+% psd_sdd - vector of the corresponding standard deviation
+%
+
+function [psd, psd_std] = radialpsd(img, step)
+ [N M] = size(img)
+
+ %% Compute power spectrum
+ imgf = fftshift(fft2(img))
+ % Normalize by image size
+ imgfp = (abs(imgf) / (N*M)) .^ 2
+
+ %% Adjust PSD size: padding to make a square matrix
+ dimDiff = abs(N-M)
+ dimMax = max(N, M)
+ % To make square matrix
+ if N > M
+ % More rows than columns
+ if ~mod(dimDiff, 2)
+ % Even difference
+ % Pad columns to match dimension
+ imgfp = [NaN(N,dimDiff/2) imgfp NaN(N,dimDiff/2)]
+ else
+ % Odd difference
+ imgfp = [NaN(N,floor(dimDiff/2)) imgfp NaN(N,floor(dimDiff/2)+1)]
+ end
+ elseif N < M
+ % More columns than rows
+ if ~mod(dimDiff, 2)
+ % Even difference
+ % Pad rows to match dimensions
+ imgfp = [NaN(dimDiff/2,M); imgfp; NaN(dimDiff/2,M)]
+ else
+ % Pad rows to match dimensions
+ imgfp = [NaN(floor(dimDiff/2),M); imgfp; NaN(floor(dimDiff/2)+1,M)]
+ end
+ end
+
+ % Only consider one half of spectrum (due to symmetry)
+ halfDim = floor(dimMax/2) + 1
+
+ %% Compute radially average power spectrum
+ % Make Cartesian grid
+ [X Y] = meshgrid(-dimMax/2:dimMax/2-1, -dimMax/2:dimMax/2-1)
+ % Convert to polar coordinate axes
+ [theta rho] = cart2pol(X, Y)
+ rho = round(rho)
+ i = cell(floor(dimMax/2)+1, 1)
+ for r = 0:floor(dimMax/2)
+ i{r+1} = find(rho == r)
+ end
+ % calculate the radial mean power and its standard deviation
+ Pf = zeros(2, floor(dimMax/2)+1)
+ for r = 0:floor(dimMax/2)
+ Pf(1, r+1) = nanmean(imgfp(i{r+1}))
+ Pf(2, r+1) = nanstd(imgfp(i{r+1}))
+ end
+
+ % adapt to the given step size
+ psd = zeros(1, floor(size(Pf, 2) / step))
+ psd_std = zeros(size(psd))
+ for k = 1:length(psd)
+ psd(i) = mean(Pf(1, (k*step-step+1):(k*step)))
+ % approximately calculate the merged standard deviation
+ psd_std(i) = sqrt(mean(Pf(2, (k*step-step+1):(k*step)) .^ 2))
+ end
+end
+
+% vim: set ts=8 sw=4 tw=0 fenc=utf-8 ft=matlab: %