diff options
Diffstat (limited to 'matlab')
-rw-r--r-- | matlab/radialpsd.m | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/matlab/radialpsd.m b/matlab/radialpsd.m new file mode 100644 index 0000000..cff4f9e --- /dev/null +++ b/matlab/radialpsd.m @@ -0,0 +1,83 @@ +% +% radialpsd - to calculate the radial power spectrum density +% of the given 2d image +% +% Credits: +% [1] Evan Ruzanski +% Radially averaged power spectrum of 2D real-valued matrix +% https://www.mathworks.com/matlabcentral/fileexchange/23636-radially-averaged-power-spectrum-of-2d-real-valued-matrix +% +% Arguments: +% img - input 2d image (grayscale) +% step - radius step between each consecutive two circles +% +% Return: +% psd - vector contains the power at each frequency +% psd_sdd - vector of the corresponding standard deviation +% + +function [psd, psd_std] = radialpsd(img, step) + [N M] = size(img) + + %% Compute power spectrum + imgf = fftshift(fft2(img)) + % Normalize by image size + imgfp = (abs(imgf) / (N*M)) .^ 2 + + %% Adjust PSD size: padding to make a square matrix + dimDiff = abs(N-M) + dimMax = max(N, M) + % To make square matrix + if N > M + % More rows than columns + if ~mod(dimDiff, 2) + % Even difference + % Pad columns to match dimension + imgfp = [NaN(N,dimDiff/2) imgfp NaN(N,dimDiff/2)] + else + % Odd difference + imgfp = [NaN(N,floor(dimDiff/2)) imgfp NaN(N,floor(dimDiff/2)+1)] + end + elseif N < M + % More columns than rows + if ~mod(dimDiff, 2) + % Even difference + % Pad rows to match dimensions + imgfp = [NaN(dimDiff/2,M); imgfp; NaN(dimDiff/2,M)] + else + % Pad rows to match dimensions + imgfp = [NaN(floor(dimDiff/2),M); imgfp; NaN(floor(dimDiff/2)+1,M)] + end + end + + % Only consider one half of spectrum (due to symmetry) + halfDim = floor(dimMax/2) + 1 + + %% Compute radially average power spectrum + % Make Cartesian grid + [X Y] = meshgrid(-dimMax/2:dimMax/2-1, -dimMax/2:dimMax/2-1) + % Convert to polar coordinate axes + [theta rho] = cart2pol(X, Y) + rho = round(rho) + i = cell(floor(dimMax/2)+1, 1) + for r = 0:floor(dimMax/2) + i{r+1} = find(rho == r) + end + % calculate the radial mean power and its standard deviation + Pf = zeros(2, floor(dimMax/2)+1) + for r = 0:floor(dimMax/2) + Pf(1, r+1) = nanmean(imgfp(i{r+1})) + Pf(2, r+1) = nanstd(imgfp(i{r+1})) + end + + % adapt to the given step size + psd = zeros(1, floor(size(Pf, 2) / step)) + psd_std = zeros(size(psd)) + for k = 1:length(psd) + psd(i) = mean(Pf(1, (k*step-step+1):(k*step))) + % approximately calculate the merged standard deviation + psd_std(i) = sqrt(mean(Pf(2, (k*step-step+1):(k*step)) .^ 2)) + end +end + +% vim: set ts=8 sw=4 tw=0 fenc=utf-8 ft=matlab: % |