aboutsummaryrefslogtreecommitdiffstats
path: root/python/correct_crosstalk.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/correct_crosstalk.py')
-rwxr-xr-xpython/correct_crosstalk.py750
1 files changed, 0 insertions, 750 deletions
diff --git a/python/correct_crosstalk.py b/python/correct_crosstalk.py
deleted file mode 100755
index 7d83912..0000000
--- a/python/correct_crosstalk.py
+++ /dev/null
@@ -1,750 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# References:
-# [1] Definition of RMF and ARF file formats
-# https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
-# [2] CIAO: Auxiliary Response File
-# http://cxc.harvard.edu/ciao/dictionary/arf.html
-# [3] CIAO: Redistribution Matrix File
-# http://cxc.harvard.edu/ciao/dictionary/rmf.html
-# [4] astropy - FITS format code
-# http://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation
-# [5] XSPEC - Spectral Fitting
-# https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html
-#
-#
-# Weitian LI
-# Created: 2016-03-26
-# Updated: 2016-04-06
-#
-# ChangeLog:
-# 2016-04-06:
-# * Fix `RMF: get_rmfimg()' for XMM EPIC RMF
-# 2016-04-02:
-# * Interpolate ARF in order to match the spectral channel energies
-# * Add version and date information
-# * Update documentations
-# * Update header history contents
-# 2016-04-01:
-# * Greatly update the documentations (e.g., description, sample config)
-# * Add class `RMF'
-# * Add method `get_energy()' for class `ARF'
-# * Split out class `SpectrumSet' from `Spectrum'
-# * Implement background subtraction
-# * Add config `subtract_bkg' and corresponding argument
-#
-# XXX/FIXME:
-# * SpectrumSet: estimate channel errors by Monte Carlo simulations
-#
-# TODO:
-# * Spectrum: implement the grouping function (and quality columns)
-# * Split classes ARF, RMF, Spectrum, and SpectrumSet to a separate module
-#
-
-__version__ = "0.3.0"
-__date__ = "2016-04-02"
-
-
-"""
-Correct the crosstalk effect of XMM spectra by subtracting the photons that
-scattered from the surrounding regions due to the finite PSF, and by
-compensating the photons that scattered to the surrounding regions, according
-to the generated crosstalk ARFs by SAS `arfgen'.
-
-
-Sample config file (in `ConfigObj' syntax):
------------------------------------------------------------
-verbose = True
-clobber = False
-# whether to subtract the background before crosstalk correction
-subtract_bkg = True
-# whether to fix the negative channel values due to spectral subtractions
-fix_negative = True
-
-[...]
-...
-
-[reg2]
-outfile = cc_reg2.pi
-spec = reg2.pi
-arf = reg2.arf
-rmf = reg2.rmf
-bkg = reg2_bkg.pi
- [[cross_in]]
- [[[in1]]]
- spec = reg1.pi
- arf = reg1.arf
- rmf = reg1.rmf
- bkg = reg1_bkg.pi
- cross_arf = reg_1-2.arf
- [[[in2]]]
- spec = reg3.pi
- arf = reg3.arf
- rmf = reg3.rmf
- bkg = reg3_bkg.pi
- cross_arf = reg_3-2.arf
- [[cross_out]]
- cross_arf = reg_2-1.arf, reg_2-3.arf
-
-[...]
-...
------------------------------------------------------------
-"""
-
-
-import numpy as np
-import scipy as sp
-import scipy.interpolate
-from astropy.io import fits
-from configobj import ConfigObj
-
-import sys
-import os
-import argparse
-from datetime import datetime
-
-
-class ARF: # {{{
- """
- Class to handle the ARF (ancillary/auxiliary response file),
- which contains the combined instrumental effective area
- (telescope/filter/detector) and the quantum efficiency (QE) as a
- function of energy averaged over time.
- The effective area is [cm^2], and the QE is [counts/photon]; they are
- multiplied together to create the ARF, resulting in [cm^2 counts/photon].
-
- **CAVEAT/NOTE**:
- Generally, the "ENERG_LO" and "ENERG_HI" columns of an ARF are *different*
- to the "E_MIN" and "E_MAX" columns of a RMF (which are corresponding
- to the spectrum channel energies).
- For the XMM EPIC *pn* and Chandra *ACIS*, the generated ARF does NOT have
- the same number of data points to that of spectral channels, i.e., the
- "ENERG_LO" and "ENERG_HI" columns of ARF is different to the "E_MIN" and
- "E_MAX" columns of RMF.
- Therefore it is necessary to interpolate and extrapolate the ARF curve
- in order to match the spectrum (or RMF "EBOUNDS" extension).
- As for the XMM EPIC *MOS1* and *MOS2*, the ARF data points match the
- spectral channels, i.e., the energy positions of each ARF data point and
- spectral channel are consistent. Thus the interpolation is not needed.
-
- References:
- [1] CIAO: Auxiliary Response File
- http://cxc.harvard.edu/ciao/dictionary/arf.html
- [2] Definition of RMF and ARF file formats
- https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
- """
- filename = None
- fitsobj = None
- # only consider the "SPECTRUM" extension
- header = None
- energ_lo = None
- energ_hi = None
- specresp = None
- # function of the interpolated ARF
- f_interp = None
-
- def __init__(self, filename):
- self.filename = filename
- self.fitsobj = fits.open(filename)
- ext_specresp = self.fitsobj["SPECRESP"]
- self.header = ext_specresp.header
- self.energ_lo = ext_specresp.data["ENERG_LO"]
- self.energ_hi = ext_specresp.data["ENERG_HI"]
- self.specresp = ext_specresp.data["SPECRESP"]
-
- def get_data(self, copy=True):
- if copy:
- return self.specresp.copy()
- else:
- return self.specresp
-
- def get_energy(self, mean="geometric"):
- """
- Return the mean energy values of the ARF.
-
- Arguments:
- * mean: type of the mean energy:
- + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max)
- + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max)
- """
- if mean == "geometric":
- energy = np.sqrt(self.energ_lo * self.energ_hi)
- elif mean == "arithmetic":
- energy = 0.5 * (self.energ_lo + self.energ_hi)
- else:
- raise ValueError("Invalid mean type: %s" % mean)
- return energy
-
- def interpolate(self, x=None, verbose=False):
- """
- Cubic interpolate the ARF curve using `scipy.interpolate'
-
- If the requested point is outside of the data range, the
- fill value of *zero* is returned.
-
- Arguments:
- * x: points at which the interpolation to be calculated.
-
- Return:
- If x is None, then the interpolated function is returned,
- otherwise, the interpolated data are returned.
- """
- if not hasattr(self, "f_interp") or self.f_interp is None:
- energy = self.get_energy()
- arf = self.get_data(copy=False)
- if verbose:
- print("INFO: ARF interpolating (this may take a while) ...",
- file=sys.stderr)
- f_interp = sp.interpolate.interp1d(energy, arf, kind="cubic",
- bounds_error=False, fill_value=0.0, assume_sorted=True)
- self.f_interp = f_interp
- if x is not None:
- return self.f_interp(x)
- else:
- return self.f_interp
-# class ARF }}}
-
-
-class RMF: # {{{
- """
- Class to handle the RMF (redistribution matrix file),
- which maps from energy space into detector pulse height (or position)
- space. Since detectors are not perfect, this involves a spreading of
- the observed counts by the detector resolution, which is expressed as
- a matrix multiplication.
- For X-ray spectral analysis, the RMF encodes the probability R(E,p)
- that a detected photon of energy E will be assisgned to a given
- channel value (PHA or PI) of p.
-
- The standard Legacy format [2] for the RMF uses a binary table in which
- each row contains R(E,p) for a single value of E as a function of p.
- Non-zero sequences of elements of R(E,p) are encoded using a set of
- variable length array columns. This format is compact but hard to
- manipulate and understand.
-
- **CAVEAT/NOTE**:
- + See also the above ARF CAVEAT/NOTE.
- + The "EBOUNDS" extension contains the `CHANNEL', `E_MIN' and `E_MAX'
- columns. This `CHANNEL' is the same as that of a spectrum. Therefore,
- the energy values determined from the `E_MIN' and `E_MAX' columns are
- used to interpolate and extrapolate the ARF curve.
- + The `ENERG_LO' and `ENERG_HI' columns of the "MATRIX" extension are
- the same as that of a ARF.
-
- References:
- [1] CIAO: Redistribution Matrix File
- http://cxc.harvard.edu/ciao/dictionary/rmf.html
- [2] Definition of RMF and ARF file formats
- https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
- """
- filename = None
- fitsobj = None
- ## extension "MATRIX"
- hdr_matrix = None
- energ_lo = None
- energ_hi = None
- n_grp = None
- f_chan = None
- n_chan = None
- # raw squeezed RMF matrix data
- matrix = None
- ## extension "EBOUNDS"
- hdr_ebounds = None
- channel = None
- e_min = None
- e_max = None
- ## converted 2D RMF matrix/image from the squeezed binary table
- # size: len(energ_lo) x len(channel)
- rmfimg = None
-
- def __init__(self, filename):
- self.filename = filename
- self.fitsobj = fits.open(filename)
- ## "MATRIX" extension
- ext_matrix = self.fitsobj["MATRIX"]
- self.hdr_matrix = ext_matrix.header
- self.energ_lo = ext_matrix.data["ENERG_LO"]
- self.energ_hi = ext_matrix.data["ENERG_HI"]
- self.n_grp = ext_matrix.data["N_GRP"]
- self.f_chan = ext_matrix.data["F_CHAN"]
- self.n_chan = ext_matrix.data["N_CHAN"]
- self.matrix = ext_matrix.data["MATRIX"]
- ## "EBOUNDS" extension
- ext_ebounds = self.fitsobj["EBOUNDS"]
- self.hdr_ebounds = ext_ebounds.header
- self.channel = ext_ebounds.data["CHANNEL"]
- self.e_min = ext_ebounds.data["E_MIN"]
- self.e_max = ext_ebounds.data["E_MAX"]
-
- def get_energy(self, mean="geometric"):
- """
- Return the mean energy values of the RMF "EBOUNDS".
-
- Arguments:
- * mean: type of the mean energy:
- + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max)
- + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max)
- """
- if mean == "geometric":
- energy = np.sqrt(self.e_min * self.e_max)
- elif mean == "arithmetic":
- energy = 0.5 * (self.e_min + self.e_max)
- else:
- raise ValueError("Invalid mean type: %s" % mean)
- return energy
-
- def get_rmfimg(self):
- """
- Convert the RMF data in squeezed binary table (standard Legacy format)
- to a 2D image/matrix.
- """
- def _make_rmfimg_row(n_channel, dtype, f_chan, n_chan, mat_row):
- # make sure that `f_chan' and `n_chan' are 1-D numpy array
- f_chan = np.array(f_chan).reshape(-1)
- f_chan -= 1 # FITS indices are 1-based
- n_chan = np.array(n_chan).reshape(-1)
- idx = np.concatenate([ np.arange(f, f+n) \
- for f, n in zip(f_chan, n_chan) ])
- rmfrow = np.zeros(n_channel, dtype=dtype)
- rmfrow[idx] = mat_row
- return rmfrow
- #
- if self.rmfimg is None:
- # Make the 2D RMF matrix/image
- n_energy = len(self.energ_lo)
- n_channel = len(self.channel)
- rmf_dtype = self.matrix[0].dtype
- rmfimg = np.zeros(shape=(n_energy, n_channel), dtype=rmf_dtype)
- for i in np.arange(n_energy)[self.n_grp > 0]:
- rmfimg[i, :] = _make_rmfimg_row(n_channel, rmf_dtype,
- self.f_chan[i], self.n_chan[i], self.matrix[i])
- self.rmfimg = rmfimg
- return self.rmfimg
-
- def write_rmfimg(self, outfile, clobber=False):
- rmfimg = self.get_rmfimg()
- # merge headers
- header = self.hdr_matrix.copy(strip=True)
- header.extend(self.hdr_ebounds.copy(strip=True))
- outfits = fits.PrimaryHDU(data=rmfimg, header=header)
- outfits.writeto(outfile, checksum=True, clobber=clobber)
-# class RMF }}}
-
-
-class Spectrum: # {{{
- """
- Class that deals with the X-ray spectrum file (usually *.pi).
- """
- filename = None
- # FITS object return by `fits.open()'
- fitsobj = None
- # header of "SPECTRUM" extension
- header = None
- # "SPECTRUM" extension data
- channel = None
- # name of the spectrum data column (i.e., type, "COUNTS" or "RATE")
- spec_type = None
- # unit of the spectrum data ("count" for "COUNTS", "count/s" for "RATE")
- spec_unit = None
- # spectrum data
- spec_data = None
- # several important keywords
- EXPOSURE = None
- BACKSCAL = None
- RESPFILE = None
- ANCRFILE = None
- BACKFILE = None
- # numpy dtype and FITS format code of the spectrum data
- spec_dtype = None
- spec_fits_format = None
-
- def __init__(self, filename):
- self.filename = filename
- self.fitsobj = fits.open(filename)
- ext_spec = self.fitsobj["SPECTRUM"]
- self.header = ext_spec.header.copy(strip=True)
- colnames = ext_spec.columns.names
- if "COUNTS" in colnames:
- self.spec_type = "COUNTS"
- elif "RATE" in colnames:
- self.spec_type = "RATE"
- else:
- raise ValueError("Invalid spectrum file")
- self.channel = ext_spec.data.columns["CHANNEL"].array
- col_spec_data = ext_spec.data.columns[self.spec_type]
- self.spec_data = col_spec_data.array.copy()
- self.spec_unit = col_spec_data.unit
- self.spec_dtype = col_spec_data.dtype
- self.spec_fits_format = col_spec_data.format
- # keywords
- self.EXPOSURE = self.header.get("EXPOSURE")
- self.BACKSCAL = self.header.get("BACKSCAL")
- self.AREASCAL = self.header.get("AREASCAL")
- self.RESPFILE = self.header.get("RESPFILE")
- self.ANCRFILE = self.header.get("ANCRFILE")
- self.BACKFILE = self.header.get("BACKFILE")
-
- def get_data(self, copy=True):
- if copy:
- return self.spec_data.copy()
- else:
- return self.spec_data
-
- def get_channel(self, copy=True):
- if copy:
- return self.channel.copy()
- else:
- return self.channel
-
- def reset_header_keywords(self,
- keywords=["ANCRFILE", "RESPFILE", "BACKFILE"]):
- """
- Reset the keywords to "NONE" to avoid confusion or mistakes.
- """
- for kw in keywords:
- if kw in self.header:
- header[kw] = "NONE"
-
- def write(self, filename, clobber=False):
- """
- Create a new "SPECTRUM" table/extension and replace the original
- one, then write to output file.
- """
- ext_spec_cols = fits.ColDefs([
- fits.Column(name="CHANNEL", format="I", array=self.channel),
- fits.Column(name=self.spec_type, format=self.spec_fits_format,
- unit=self.spec_unit, array=self.spec_data)])
- ext_spec = fits.BinTableHDU.from_columns(ext_spec_cols,
- header=self.header)
- self.fitsobj["SPECTRUM"] = ext_spec
- self.fitsobj.writeto(filename, clobber=clobber, checksum=True)
-# class Spectrum }}}
-
-
-class SpectrumSet(Spectrum): # {{{
- """
- This class handles a set of spectrum, including the source spectrum,
- RMF, ARF, and the background spectrum.
-
- **NOTE**:
- The "COUNTS" column data are converted from "int32" to "float32",
- since this spectrum will be subtracted/compensated according to the
- ratios of ARFs.
- """
- # ARF object for this spectrum
- arf = None
- # RMF object for this spectrum
- rmf = None
- # background Spectrum object for this spectrum
- bkg = None
-
- # numpy dtype and FITS format code to which the spectrum data be
- # converted if the data is "COUNTS"
- _spec_dtype = np.float32
- _spec_fits_format = "E"
-
- def __init__(self, filename, arffile=None, rmffile=None, bkgfile=None):
- super(self.__class__, self).__init__(filename)
- # convert spectrum data type if necessary
- if self.spec_data.dtype != self._spec_dtype:
- self.spec_data = self.spec_data.astype(self._spec_dtype)
- self.spec_dtype = self._spec_dtype
- self.spec_fits_format = self._spec_fits_format
- if arffile is not None:
- self.arf = ARF(arffile)
- if rmffile is not None:
- self.rmf = RMF(rmffile)
- if bkgfile is not None:
- self.bkg = Spectrum(bkgfile)
-
- def get_energy(self, mean="geometric"):
- """
- Get the energy values of each channel if RMF present.
-
- NOTE:
- The "E_MIN" and "E_MAX" columns of the RMF is required to calculate
- the spectrum channel energies.
- And the channel energies are generally different to the "ENERG_LO"
- and "ENERG_HI" of the corresponding ARF.
- """
- if self.rmf is None:
- return None
- else:
- return self.rmf.get_energy(mean=mean)
-
- def get_arf(self, mean="geometric", copy=True):
- """
- Get the corresponding ARF curve data if the ARF presents.
-
- Return:
- [ energy, resp ]
- where the "energy" and "resp" are the ARF energy values and
- spectral response array, respectively.
- """
- if self.arf is None:
- return None
- else:
- energy = self.arf.get_energy(mean=mean)
- resp = self.arf.get_data(copy=copy)
- return [ energy, resp ]
-
- def subtract_bkg(self, inplace=True, verbose=False):
- """
- Subtract the background contribution from the source spectrum.
- The `EXPOSURE' and `BACKSCAL' values are required to calculate
- the fraction/ratio for the background subtraction.
-
- Arguments:
- * inplace: whether replace the `spec_data' with the background-
- subtracted spectrum data; If True, the attribute
- `spec_bkg_subtracted' is also set to `True' when
- the subtraction finished.
-
- Return:
- background-subtracted spectrum data
- """
- ratio = (self.EXPOSURE / self.bkg.EXPOSURE) * \
- (self.BACKSCAL / self.bkg.BACKSCAL) * \
- (self.AREASCAL / self.bkg.AREASCAL)
- operation = " SUBTRACT_BACKGROUND: %s - %s * %s" % \
- (self.filename, ratio, self.bkg.filename)
- if verbose:
- print(operation, file=sys.stderr)
- spec_data_subbkg = self.spec_data - ratio * self.bkg.get_data()
- if inplace:
- self.spec_data = spec_data_subbkg
- self.spec_bkg_subtracted = True
- # also record history
- self.header.add_history(operation)
- return spec_data_subbkg
-
- def subtract(self, spectrumset, cross_arf, verbose=False):
- """
- Subtract the photons that originate from the surrounding regions
- but were scattered into this spectrum due to the finite PSF.
-
- The background of this spectrum and the given spectrum should
- both be subtracted before applying this subtraction for crosstalk
- correction, as well as the below `compensate()' procedure.
-
- NOTE:
- 1. The crosstalk ARF must be provided, since the `spectrumset.arf'
- is required to be its ARF without taking crosstalk into account:
- spec1_new = spec1 - spec2 * (cross_arf_2_to_1 / arf2)
- 2. The ARF are interpolated to match the energies of spetral channels.
- """
- operation = " SUBTRACT: %s - (%s/%s) * %s" % (self.filename,
- cross_arf.filename, spectrumset.arf.filename,
- spectrumset.filename)
- if verbose:
- print(operation, file=sys.stderr)
- energy = self.get_energy()
- arfresp_spec = spectrumset.arf.interpolate(x=energy, verbose=verbose)
- arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose)
- arf_ratio = arfresp_cross / arfresp_spec
- # fix nan values due to division by zero
- arf_ratio[np.isnan(arf_ratio)] = 0.0
- self.spec_data -= spectrumset.get_data() * arf_ratio
- # record history
- self.header.add_history(operation)
-
- def compensate(self, cross_arf, verbose=False):
- """
- Compensate the photons that originate from this regions but were
- scattered into the surrounding regions due to the finite PSF.
-
- formula:
- spec1_new = spec1 + spec1 * (cross_arf_1_to_2 / arf1)
- """
- operation = " COMPENSATE: %s + (%s/%s) * %s" % (self.filename,
- cross_arf.filename, self.arf.filename, self.filename)
- if verbose:
- print(operation, file=sys.stderr)
- energy = self.get_energy()
- arfresp_this = self.arf.interpolate(x=energy, verbose=verbose)
- arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose)
- arf_ratio = arfresp_cross / arfresp_this
- # fix nan values due to division by zero
- arf_ratio[np.isnan(arf_ratio)] = 0.0
- self.spec_data += self.get_data() * arf_ratio
- # record history
- self.header.add_history(operation)
-
- def fix_negative(self, verbose=False):
- """
- The subtractions may lead to negative counts, it may be necessary
- to fix these channels with negative values.
- """
- neg_counts = self.spec_data < 0
- N = len(neg_counts)
- neg_channels = np.arange(N, dtype=np.int)[neg_counts]
- if len(neg_channels) > 0:
- print("WARNING: %d channels have NEGATIVE counts" % \
- len(neg_channels), file=sys.stderr)
- i = 0
- while len(neg_channels) > 0:
- i += 1
- if verbose:
- if i == 1:
- print("*** Fixing negative channels: iter %d..." % i,
- end="", file=sys.stderr)
- else:
- print("%d..." % i, end="", file=sys.stderr)
- for ch in neg_channels:
- neg_val = self.spec_data[ch]
- if ch < N-2:
- self.spec_data[ch] = 0
- self.spec_data[(ch+1):(ch+3)] -= 0.5 * np.abs(neg_val)
- else:
- # just set to zero if it is the last 2 channels
- self.spec_data[ch] = 0
- # update negative channels indices
- neg_counts = self.spec_data < 0
- neg_channels = np.arange(N, dtype=np.int)[neg_counts]
- if i > 0:
- print("FIXED ***", file=sys.stderr)
- # record history
- self.header.add_history(" FIXED NEGATIVE CHANNELS")
-# class SpectrumSet }}}
-
-
-class Crosstalk: # {{{
- """
- Crosstalk correction.
- """
- # `SpectrumSet' object for the spectrum to be corrected
- spectrumset = None
- # NOTE/XXX: do NOT use list (e.g., []) here, otherwise, all the
- # instances will share these list properties.
- # `SpectrumSet' and `ARF' objects corresponding to the spectra from
- # which the photons were scattered into this spectrum.
- cross_in_specset = None
- cross_in_arf = None
- # `ARF' objects corresponding to the regions to which the photons of
- # this spectrum were scattered into.
- cross_out_arf = None
- # output filename to which write the corrected spectrum
- outfile = None
-
- def __init__(self, config):
- """
- Arguments:
- * config: a section of the whole config file (`ConfigObj' object)
- """
- self.cross_in_specset = []
- self.cross_in_arf = []
- self.cross_out_arf = []
- # this spectrum to be corrected
- self.spectrumset = SpectrumSet(filename=config["spec"],
- arffile=config["arf"], rmffile=config.get("rmf"),
- bkgfile=config.get("bkg"))
- # spectra and cross arf from which photons were scattered in
- for reg_in in config["cross_in"].values():
- specset = SpectrumSet(filename=reg_in["spec"],
- arffile=reg_in["arf"], rmffile=reg_in.get("rmf"),
- bkgfile=reg_in.get("bkg"))
- self.cross_in_specset.append(specset)
- self.cross_in_arf.append(ARF(reg_in["cross_arf"]))
- # regions into which the photons of this spectrum were scattered into
- if "cross_out" in config.sections:
- cross_arf = config["cross_out"].as_list("cross_arf")
- for arffile in cross_arf:
- self.cross_out_arf.append(ARF(arffile))
- # output filename
- self.outfile = config["outfile"]
-
- def do_correction(self, subtract_bkg=True, fix_negative=False,
- verbose=False):
- """
- Perform the crosstalk correction. The background contribution
- for each spectrum is subtracted first if `subtract_bkg' is True.
- The basic correction procedures are recorded to the header.
- """
- self.spectrumset.header.add_history("Crosstalk Correction BEGIN")
- self.spectrumset.header.add_history(" TOOL: %s (v%s) @ %s" % (\
- os.path.basename(sys.argv[0]), __version__,
- datetime.utcnow().isoformat()))
- # background subtraction
- if subtract_bkg:
- if verbose:
- print("INFO: subtract background ...", file=sys.stderr)
- self.spectrumset.subtract_bkg(inplace=True, verbose=verbose)
- # also apply background subtraction to the surrounding spectra
- for specset in self.cross_in_specset:
- specset.subtract_bkg(inplace=True, verbose=verbose)
- # subtractions
- if verbose:
- print("INFO: apply subtractions ...", file=sys.stderr)
- for specset, cross_arf in zip(self.cross_in_specset,
- self.cross_in_arf):
- self.spectrumset.subtract(spectrumset=specset,
- cross_arf=cross_arf, verbose=verbose)
- # compensations
- if verbose:
- print("INFO: apply compensations ...", file=sys.stderr)
- for cross_arf in self.cross_out_arf:
- self.spectrumset.compensate(cross_arf=cross_arf,
- verbose=verbose)
- # fix negative values in channels
- if fix_negative:
- if verbose:
- print("INFO: fix negative channel values ...", file=sys.stderr)
- self.spectrumset.fix_negative(verbose=verbose)
- self.spectrumset.header.add_history("END Crosstalk Correction")
-
- def write(self, filename=None, clobber=False):
- if filename is None:
- filename = self.outfile
- self.spectrumset.reset_header_keywords(
- keywords=["ANCRFILE", "BACKFILE"])
- self.spectrumset.write(filename, clobber=clobber)
-# class Crosstalk }}}
-
-
-def set_argument(name, default, cmdargs, config):
- value = default
- if name in config.keys():
- value = config.as_bool(name)
- value_cmd = vars(cmdargs)[name]
- if value_cmd != default:
- value = value_cmd # command arguments overwrite others
- return value
-
-
-def main():
- parser = argparse.ArgumentParser(
- description="Correct the crosstalk effects for XMM EPIC spectra",
- epilog="Version: %s (%s)" % (__version__, __date__))
- parser.add_argument("config", help="config file in which describes " +\
- "the crosstalk relations ('ConfigObj' syntax)")
- parser.add_argument("-B", "--no-subtract-bkg", dest="subtract_bkg",
- action="store_false", help="do NOT subtract background first")
- parser.add_argument("-N", "--fix-negative", dest="fix_negative",
- action="store_true", help="fix negative channel values")
- parser.add_argument("-C", "--clobber", dest="clobber",
- action="store_true", help="overwrite output file if exists")
- parser.add_argument("-v", "--verbose", dest="verbose",
- action="store_true", help="show verbose information")
- args = parser.parse_args()
-
- config = ConfigObj(args.config)
-
- subtract_bkg = set_argument("subtract_bkg", True, args, config)
- fix_negative = set_argument("fix_negative", False, args, config)
- verbose = set_argument("verbose", False, args, config)
- clobber = set_argument("clobber", False, args, config)
-
- for region in config.sections:
- if verbose:
- print("INFO: processing '%s' ..." % region, file=sys.stderr)
- crosstalk = Crosstalk(config.get(region))
- crosstalk.do_correction(subtract_bkg=subtract_bkg,
- fix_negative=fix_negative, verbose=verbose)
- crosstalk.write(clobber=clobber)
-
-
-if __name__ == "__main__":
- main()
-
-# vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: #