aboutsummaryrefslogtreecommitdiffstats
path: root/python
diff options
context:
space:
mode:
Diffstat (limited to 'python')
-rw-r--r--python/sbp_fit.py110
1 files changed, 66 insertions, 44 deletions
diff --git a/python/sbp_fit.py b/python/sbp_fit.py
index 0b7d29a..0ce8d4d 100644
--- a/python/sbp_fit.py
+++ b/python/sbp_fit.py
@@ -3,9 +3,13 @@
#
# Aaron LI
# Created: 2016-03-13
-# Updated: 2016-03-14
+# Updated: 2016-03-31
#
# Changelogs:
+# 2016-03-31:
+# * Remove `ci_report()'
+# * Add `make_results()' to orgnize all results as s Python dictionary
+# * Report results as json string
# 2016-03-28:
# * Add `main()', `make_model()'
# * Use `configobj' to handle configurations
@@ -25,6 +29,7 @@ or the double-beta model:
s(r) = s01 * [1.0 + (r/rc1)^2] ^ (0.5-3*beta1) +
s02 * [1.0 + (r/rc2)^2] ^ (0.5-3*beta2) + bkg
+
Sample config file:
-------------------------------------------------
name = <NAME>
@@ -61,8 +66,8 @@ bkg = 1.0e-9, 0.0, 1.0e-7
-------------------------------------------------
"""
-__version__ = "0.4.0"
-__date__ = "2016-03-28"
+__version__ = "0.5.0"
+__date__ = "2016-03-31"
import numpy as np
import lmfit
@@ -76,6 +81,8 @@ import os
import sys
import re
import argparse
+import json
+from collections import OrderedDict
plt.style.use("ggplot")
@@ -456,54 +463,69 @@ class SbpFit:
if not hasattr(self, "f_residual") or self.f_residual is None:
self.set_residual()
self.fitter = lmfit.Minimizer(self.f_residual, self.model.params)
- self.results = self.fitter.minimize(method=method)
- self.fitted_model = lambda x: self.model.func(x, self.results.params)
+ self.fitted = self.fitter.minimize(method=method)
+ self.fitted_model = lambda x: self.model.func(x, self.fitted.params)
def calc_ci(self, sigmas=[0.68, 0.90]):
# `conf_interval' requires the fitted results have valid `stderr',
# so we need to re-fit the model with method `leastsq'.
- results = self.fitter.minimize(method="leastsq",
- params=self.results.params)
- self.ci, self.trace = lmfit.conf_interval(self.fitter, results,
+ fitted = self.fitter.minimize(method="leastsq",
+ params=self.fitted.params)
+ self.ci, self.trace = lmfit.conf_interval(self.fitter, fitted,
sigmas=sigmas, trace=True)
- @staticmethod
- def ci_report(ci, with_offset=True):
+ def make_results(self):
"""
- Format and return the report for confidence intervals.
- This function is intended to replace the `lmfit.ci_report()`
- which do not use scitenfic notation for small values.
+ Make the `self.results' dictionary which contains all the fitting
+ results as well as the confidence intervals.
"""
- pnames = list(ci.keys())
- plen = max(map(len, pnames))
- report = []
- # header
- sigmas = [ v[0] for v in ci.get(pnames[0]) if v[0] > 0.0 ]
- fmt = "{:<%d}" % (plen+1) + \
- " {:11.2%} {:11.2%} _BEST_ {:11.2%} {:11.2%}"
- report.append(fmt.format(" ", *sigmas))
- # parameters ci
- for par in pnames:
- values = [ v[1] for v in ci.get(par) ]
- if with_offset:
- N = len(values)
- offsets = [ values[N//2] for i in range(N) ]
- offsets[N//2] = 0.0
- values = list(map(lambda a,b: a-b, values, offsets))
- fmt = "{:<%d}" % (plen+1) + \
- " {:+11.5g} {:+11.5g} {:11.5g} {:+11.5g} {:+11.5g}"
- report.append(fmt.format(par+":", *values))
- return "\n".join(report)
+ fitted = self.fitted
+ self.results = OrderedDict()
+ ## fitting results
+ self.results.update(
+ nfev = fitted.nfev,
+ ndata = fitted.ndata,
+ nvarys = fitted.nvarys, # number of varible paramters
+ nfree = fitted.nfree, # degree of freem
+ chisqr = fitted.chisqr,
+ redchi = fitted.redchi,
+ aic = fitted.aic,
+ bic = fitted.bic)
+ params = fitted.params
+ pnames = list(params.keys())
+ pvalues = OrderedDict()
+ for pn in pnames:
+ par = params.get(pn)
+ pvalues[pn] = [par.value, par.min, par.max, par.vary]
+ self.results["params"] = pvalues
+ ## confidence intervals
+ if hasattr(self, "ci") and self.ci is not None:
+ ci = self.ci
+ ci_values = OrderedDict()
+ ci_sigmas = [ "ci%02d" % (v[0]*100) for v in ci.get(pnames[0]) ]
+ ci_names = sorted(list(set(ci_sigmas)))
+ ci_idx = { k: [] for k in ci_names }
+ for cn, idx in zip(ci_sigmas, range(len(ci_sigmas))):
+ ci_idx[cn].append(idx)
+ # parameters ci
+ for pn in pnames:
+ ci_pv = OrderedDict()
+ pv = [ v[1] for v in ci.get(pn) ]
+ # best
+ pv_best = pv[ ci_idx["ci00"][0] ]
+ ci_pv["best"] = pv_best
+ # ci of each sigma
+ pv2 = [ v-pv_best for v in pv ]
+ for cn in ci_names[1:]:
+ ci_pv[cn] = [ pv2[idx] for idx in ci_idx[cn] ]
+ ci_values[pn] = ci_pv
+ self.results["ci"] = ci_values
def report(self, outfile=sys.stdout):
- if hasattr(self, "results") and self.results is not None:
- p = lmfit.fit_report(self.results)
- print(p, file=outfile)
- if hasattr(self, "ci") and self.ci is not None:
- print("-----------------------------------------------",
- file=outfile)
- p = self.ci_report(self.ci)
- print(p, file=outfile)
+ if not hasattr(self, "results") or self.results is None:
+ self.make_results()
+ jd = json.dumps(self.results, indent=2)
+ print(jd, file=outfile)
def plot(self, ax=None, fig=None):
if ax is None:
@@ -525,7 +547,7 @@ class SbpFit:
ypred = self.fitted_model(xpred)
ymin = min(min(self.ydata), min(ypred))
ymax = max(max(self.ydata), max(ypred))
- self.model.plot(params=self.results.params, xdata=xpred, ax=ax)
+ self.model.plot(params=self.fitted.params, xdata=xpred, ax=ax)
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlim(1.0, xmax)
@@ -537,8 +559,8 @@ class SbpFit:
ax.set_xlabel("Radius (pixel)")
ax.set_ylabel(r"Surface Brightness (photons/cm$^2$/pixel$^2$/s)")
ax.text(x=xmax, y=ymax,
- s="redchi: %.2f / %.2f = %.2f" % (self.results.chisqr,
- self.results.nfree, self.results.chisqr/self.results.nfree),
+ s="redchi: %.2f / %.2f = %.2f" % (self.fitted.chisqr,
+ self.fitted.nfree, self.fitted.chisqr/self.fitted.nfree),
horizontalalignment="right", verticalalignment="top")
return (fig, ax)