aboutsummaryrefslogtreecommitdiffstats
path: root/astro
Commit message (Collapse)AuthorAgeFilesLines
...
* Add `randpoints.py` to generate point source informationsAaron LI2015-12-122-5/+355
|
* Added astro/fits/merge_fits.pyAaron LI2015-06-172-2/+254
|
* Updated astro tools.Aaron LI2015-06-163-12/+188
| | | | | | | | | | | | | | | | | * fit_betasbp_cut.py - fixed 'dof' calculation with 'n-p-1' - fixed 'par_eps' calculation/configuration - added 'fit_model_bounds' using 'scipy.optimize.minimize' to perform function minimization with bounds - split the data cut section to function 'cut_data' - added argument 'options' to 'fit_model_bounds' * marx_pntsrc.py Run MARX simulation on a given list of point sources, merge the output simulation results, and finally convert into FITS image. * blanksky_add_time.py Add a time column for the chandra blanksky event file. The time data are generated with a uniform distribution between TSTART and TSTOP.
* Updated fit_betasbp_cut.py to v0.5.0, supported parameter bounds.Aaron LI2015-06-071-31/+130
| | | | | | | * added 'fit_model_bounds' using 'scipy.optimize.minimize' to perform function minimization with bounds * split the data cut section to function 'cut_data' * added argument 'options' to 'fit_model_bounds'
* Major update to 'fit_betasbp_cut.py'.Aaron LI2015-06-061-96/+210
| | | | | | | | | | | fit_betasbp_cut.py: * replace getopt with 'argparse' * added 'get_parameter' to process model parameter initial value and bounds * support read parameter bounds from input file * added options '--s0', '--rc', '--beta', '--const' to get paramter initial values and bounds * renamed 'fit_beta_model' to 'fit_model', and added argument 'func' to support other models
* Renamed & updated fit_beta_model.py -> fit_betasbp_cut.py.Aaron LI2015-06-062-133/+237
| | | | | fit_betasbp_cut.py: * added support ignore the data points whose radius value less than the given value.
* Added tool 'fit_beta_model.py'.Aaron LI2015-06-061-0/+133
fit_beta_model.py * fit provided data with beta model * ignore the inner-most n data points for the fitting