#!/usr/bin/env python3 # # Copyright (c) Weitian LI <weitian@aaronly.me> # MIT license # """ FITS image cube manipulation tool. This tool was originally developed to create a FITS image cube from a series of CT scan slices to help better visualize/examine them in the sophisticated SAOImage DS9 software. Each slice in the cube is a CT image at a position from the CT scan, with the z-axis tracking the slice positions (equal-distant) in units of, e.g., [cm]. Then this tool was significantly improved to deal with the spectral cube in radio astronomy, with each slice representing the radio sky at a certain frequency (channel), so the z-axis records the frequency in units of [Hz]. For example, we simulate the observed image using OSKAR and WSClean one frequency channel at a time, then use this tool to combine them into a spectral cube, from which the 2D and 1D power spectra is derived. The ``calibrate`` sub-command is used to calibrate the frequency channel responses to make them spectrally smooth by fitting a low-order polynomial. The ``corrupt`` sub-command is used to corrupt the frequency channel responses to simulate that real instrument suffers from calibration imperfections. """ import os import sys import argparse from datetime import datetime, timezone from functools import lru_cache import numpy as np from astropy.io import fits from astropy.wcs import WCS class FITSCube: """ FITS image cube. """ def __init__(self, infile=None): if infile is not None: self.load(infile) def load(self, infile): with fits.open(infile) as f: self.data = f[0].data self.header = f[0].header print("Loaded FITS cube from file: %s" % infile) print("Cube dimensions: %dx%dx%d" % (self.width, self.height, self.nslice)) # The Z-axis position of the first slice. self.zbegin = self.header["CRVAL3"] # The Z-axis step/spacing between slices. self.zstep = self.header["CDELT3"] def add_slices(self, infiles, zbegin=0.0, zstep=1.0): """ Create a FITS cube from input image slices. """ self.infiles = infiles self.zbegin = zbegin self.zstep = zstep nslice = len(infiles) header, image = self.open_image(infiles[0]) shape = (nslice, ) + image.shape data = np.zeros(shape, dtype=image.dtype) for i, fn in enumerate(infiles): print("[%d/%d] Adding image slice: %s ..." % (i+1, nslice, fn)) hdr, img = self.open_image(fn) data[i, :, :] = img self.data = data self.header = header.copy(strip=True) print("Created FITS cube of dimensions: %dx%dx%d" % (self.width, self.height, self.nslice)) @staticmethod def open_image(infile): """ Open the slice image and return its header and 2D image data. NOTE ---- The input slice image may have following dimensions: * NAXIS=2: [Y, X] * NAXIS=3: [FREQ=1, Y, X] * NAXIS=4: [STOKES=1, FREQ=1, Y, X] NOTE ---- Only open slice image that has only ONE frequency and ONE Stokes parameter. Returns ------- header : `~astropy.io.fits.Header` image : 2D `~numpy.ndarray` The 2D [Y, X] image part of the slice image. """ with fits.open(infile) as f: header = f[0].header data = f[0].data if data.ndim == 2: # NAXIS=2: [Y, X] image = data elif data.ndim == 3 and data.shape[0] == 1: # NAXIS=3: [FREQ=1, Y, X] image = data[0, :, :] elif data.ndim == 4 and data.shape[0] == 1 and data.shape[1] == 1: # NAXIS=4: [STOKES=1, FREQ=1, Y, X] image = data[0, 0, :, :] else: raise ValueError("Slice '{0}' has invalid dimensions: {1}".format( infile, data.shape)) return (header, image) @property def header(self): if not hasattr(self, "header_"): self.header_ = fits.Header() return self.header_ @header.setter def header(self, value): self.header_ = value for key in ["CTYPE4", "CRPIX4", "CRVAL4", "CDELT4", "CUNIT4"]: try: del self.header_[key] except KeyError: pass @property @lru_cache() def wcs(self): w = WCS(naxis=3) w.wcs.ctype = ["pixel", "pixel", "pixel"] w.wcs.crpix = np.array([self.header.get("CRPIX1", 1.0), self.header.get("CRPIX2", 1.0), 1.0]) w.wcs.crval = np.array([self.header.get("CRVAL1", 0.0), self.header.get("CRVAL2", 0.0), self.zbegin]) w.wcs.cdelt = np.array([self.header.get("CDELT1", 1.0), self.header.get("CDELT2", 1.0), self.zstep]) return w def write(self, outfile, clobber=False): header = self.header header.extend(self.wcs.to_header(), update=True) header["DATE"] = (datetime.now(timezone.utc).astimezone().isoformat(), "File creation date") header.add_history(" ".join(sys.argv)) hdu = fits.PrimaryHDU(data=self.data, header=header) try: hdu.writeto(outfile, overwrite=clobber) except TypeError: hdu.writeto(outfile, clobber=clobber) @property def width(self): __, __, w = self.data.shape return w @property def height(self): __, h, __ = self.data.shape return h @property def nslice(self): ns, __, __ = self.data.shape return ns @property @lru_cache() def zvalues(self): """ Calculate the Z-axis positions for all slices """ nslice = self.nslice wcs = self.wcs pix = np.zeros(shape=(nslice, 3), dtype=int) pix[:, 2] = np.arange(nslice) world = wcs.wcs_pix2world(pix, 0) return world[:, 2] @property def slices(self): """ A list of slices in the cube w.r.t. ``zvalues``. """ return (self.data[i, :, :] for i in range(self.nslice)) def get_slice(self, i, csize=None): """ Get the i-th (0-based) slice image, and crop out the central box of size ``csize`` if specified. """ if csize is None: return self.data[i, :, :] else: rows, cols = self.height, self.width rc, cc = rows//2, cols//2 cs1, cs2 = csize//2, (csize+1)//2 return self.data[i, (rc-cs1):(rc+cs2), (cc-cs1):(cc+cs2)] def apply_gain(self, gain): """ Multiply the supplied ``gain`` to each slice, to achieve slice or channel response calibration or corruption. """ gain = np.asarray(gain) self.data *= gain[:, np.newaxis, np.newaxis] @property def unit(self): """ Cube data unit. """ return self.header.get("BUNIT") @unit.setter def unit(self, value): self.header["BUNIT"] = value @property def zunit(self): """ Unit of the slice z-axis positions. """ return self.header.get("CUNIT3") @zunit.setter def zunit(self, value): self.header["CUNIT3"] = value def cmd_info(args): """ Sub-command: "info", show FITS cube information """ cube = FITSCube(args.infile) if cube.zunit: pzunit = " [%s]" % cube.zunit else: pzunit = "" zvalues = cube.zvalues print("Data cube unit: %s" % cube.unit) print("Image/slice size: %dx%d" % (cube.width, cube.height)) print("Number of slices: %d" % cube.nslice) print("Slice step/spacing: %s%s" % (cube.zstep, pzunit)) print("Slice positions: %s <-> %s%s" % (zvalues.min(), zvalues.max(), pzunit)) if args.meanstd: mean = np.zeros(cube.nslice) std = np.zeros(cube.nslice) for i in range(cube.nslice): image = cube.get_slice(i, csize=args.center) if args.abs: image = np.abs(image) mean[i] = np.mean(image) std[i] = np.std(image) print("Slice <z> <mean> +/- <std>:") for i, z in enumerate(zvalues): print("* %12.4e: %12.4e %12.4e" % (z, mean[i], std[i])) if args.outfile: data = np.column_stack([zvalues, mean, std]) np.savetxt(args.outfile, data, header="z mean std") print("Saved mean/std data to file: %s" % args.outfile) def cmd_create(args): """ Sub-command: "create", create a FITS cube """ if not args.clobber and os.path.exists(args.outfile): raise FileExistsError("output file already exists: %s" % args.outfile) cube = FITSCube() cube.add_slices(args.infiles, zbegin=args.zbegin, zstep=args.zstep) cube.zunit = args.zunit if args.unit: cube.unit = args.unit cube.write(args.outfile, clobber=args.clobber) print("Created FITS cube: %s" % args.outfile) def cmd_calibrate(args): """ Sub-command: "calibrate", calibrate the z-axis slice/channel responses by fitting a polynomial. """ if not args.dryrun: if args.outfile is None: raise ValueError("--outfile required") elif not args.clobber and os.path.exists(args.outfile): raise OSError("output file already exists: %s" % args.outfile) cube = FITSCube(args.infile) zvalues = cube.zvalues print("Data cube unit: %s" % cube.unit) print("Image/slice size: %dx%d" % (cube.width, cube.height)) print("Number of slices: %d" % cube.nslice) mean = np.zeros(cube.nslice) std = np.zeros(cube.nslice) for i in range(cube.nslice): image = cube.get_slice(i, csize=args.center) if args.abs: image = np.abs(image) threshold = np.percentile(image, q=100*args.threshold) data = image[image >= threshold] mean[i] = np.mean(data) std[i] = np.std(data) print("Fitting polynomial order: %d" % args.poly_order) weights = 1.0 / std pfit = np.polyfit(zvalues, mean, w=weights, deg=args.poly_order) mean_new = np.polyval(pfit, zvalues) coef = mean_new / mean if args.dryrun: print("*** DRY RUN MODE ***") else: print("Applying slice/channel calibration gains ...") cube.apply_gain(coef) print("Saving calibrated FITS cube ...") cube.write(args.outfile, clobber=args.clobber) print("Calibrated FITS cube wrote to: %s" % args.outfile) print("Slice <z> <mean.old> +/- <std.old> " + "<mean.new> <gain.coef>") for i, z in enumerate(zvalues): print("* %12.4e: %12.4e %12.4e %12.4e %.6f" % (z, mean[i], std[i], mean_new[i], coef[i])) if args.save_info: data = np.column_stack([zvalues, mean, std, mean_new, coef]) header = [ "Arguments:", "+ center: %s" % args.center, "+ abs: %s" % args.abs, "+ threshold (percentile): %.2f" % args.threshold, "+ polynomial_order: %d" % args.poly_order, "", "Columns:", "1. z/frequency: z-axis position / frequency [%s]" % cube.zunit, "2. mean.old: mean before calibration [%s]" % cube.unit, "3. std.old: standard deviation before calibration", "4. mean.new: mean after calibration", "5. gain_coef: calibration coefficient", "", ] infofile = os.path.splitext(args.outfile)[0] + ".txt" np.savetxt(infofile, data, header="\n".join(header)) print("Saved calibration information to file: %s" % infofile) def cmd_corrupt(args): """ Sub-command: "corrupt", corrupt z-axis slice/channel responses by applying random gain coefficients. """ if not args.clobber and os.path.exists(args.outfile): raise OSError("output file already exists: %s" % args.outfile) cube = FITSCube(args.infile) zvalues = cube.zvalues print("Data cube unit: %s" % cube.unit) print("Image/slice size: %dx%d" % (cube.width, cube.height)) print("Number of slices: %d" % cube.nslice) if args.gaus_sigma is not None: print("Gaussian sigma: %.1f%%" % args.gaus_sigma) sigma = args.gaus_sigma * 0.01 gains = np.random.normal(loc=0.0, scale=sigma, size=cube.nslice) idx_outliers = np.abs(gains) > 3*sigma gains[idx_outliers] = np.sign(gains[idx_outliers]) * (3*sigma) gains += 1.0 else: print("Use corruption information from file: %s" % args.infofile) args.save_info = False # ``--info-file`` discards ``--save-info`` crpdata = np.loadtxt(args.infofile) gains = crpdata[:, 1] print("Applying slice/channel corruptions ...") cube.apply_gain(gains) print("Saving corrupted FITS cube ...") cube.write(args.outfile, clobber=args.clobber) print("Corrupted FITS cube wrote to: %s" % args.outfile) print("Slice <z> <gain.corruption>") for z, g in zip(zvalues, gains): print("* %12.4e: %.6f" % (z, g)) if args.save_info: data = np.column_stack([zvalues, gains]) header = [ "Arguments:", "+ gaus_sigma: %.1f%%" % args.gaus_sigma, "", "Columns:", "1. z/frequency: z-axis position / frequency [%s]" % cube.zunit, "2. gain_corruption: corruption coefficient", "", ] infofile = os.path.splitext(args.outfile)[0] + ".txt" np.savetxt(infofile, data, header="\n".join(header)) print("Saved corruption information to file: %s" % infofile) def main(): parser = argparse.ArgumentParser( description="FITS image cube manipulation tool") subparsers = parser.add_subparsers(dest="subparser_name", title="sub-commands", help="additional help") # sub-command: "info" parser_info = subparsers.add_parser("info", help="show FITS cube info") parser_info.add_argument("-c", "--center", dest="center", type=int, help="crop the central box region of specified " + "size to calculate the mean/std.") parser_info.add_argument("-m", "--mean-std", dest="meanstd", action="store_true", help="calculate mean+/-std for each slice") parser_info.add_argument("-a", "--abs", dest="abs", action="store_true", help="take absolute values for image pixels") parser_info.add_argument("-o", "--outfile", dest="outfile", help="outfile to save mean/std values") parser_info.add_argument("infile", help="FITS cube filename") parser_info.set_defaults(func=cmd_info) # sub-command: "create" parser_create = subparsers.add_parser("create", help="create a FITS cube") parser_create.add_argument("-C", "--clobber", dest="clobber", action="store_true", help="overwrite existing output file") parser_create.add_argument("-U", "--data-unit", dest="unit", help="cube data unit (will overwrite the " + "slice data unit)") parser_create.add_argument("-z", "--z-begin", dest="zbegin", type=float, default=0.0, help="Z-axis position of the first slice") parser_create.add_argument("-s", "--z-step", dest="zstep", type=float, default=1.0, help="Z-axis step/spacing between slices") parser_create.add_argument("-u", "--z-unit", dest="zunit", help="Z-axis unit (e.g., cm, Hz)") parser_create.add_argument("-o", "--outfile", dest="outfile", required=True, help="output FITS cube filename") parser_create.add_argument("-i", "--infiles", dest="infiles", nargs="+", required=True, help="input image slices (in order)") parser_create.set_defaults(func=cmd_create) # sub-command: "calibrate" parser_cal = subparsers.add_parser( "calibrate", help="calibrate z-axis slice/channel responses by fitting " + "a polynomial") parser_cal.add_argument("-n", "--dry-run", dest="dryrun", action="store_true", help="dry run mode") parser_cal.add_argument("-C", "--clobber", dest="clobber", action="store_true", help="overwrite existing output file") parser_cal.add_argument("-c", "--center", dest="center", type=int, help="crop the central box region of specified " + "size to calculate the mean/std.") parser_cal.add_argument("-t", "--threshold", dest="threshold", type=float, default=0.0, help="percentile threshold (0 -> 1) and only " + "considers image pixels with values > threshold " + "to determine the channel/slice responses; " + "(default: 0, i.e., all pixels are accounted for)") parser_cal.add_argument("-a", "--abs", dest="abs", action="store_true", help="take absolute values for image pixels") parser_cal.add_argument("-p", "--poly-order", dest="poly_order", type=int, default=2, help="order of polynomial used for fitting " + "(default: 2, i.e., quadratic)") parser_cal.add_argument("-i", "--infile", dest="infile", required=True, help="input FITS cube filename") parser_cal.add_argument("-o", "--outfile", dest="outfile", help="output calibrated FITS cube (optional " + "for dry-run model)") parser_cal.add_argument("--save-info", dest="save_info", action="store_true", help="save the calibration information of each " + "channel/slice to a text file") parser_cal.set_defaults(func=cmd_calibrate) # sub-command: "corrupt" parser_crp = subparsers.add_parser( "corrupt", help="corrupt z-axis slice/channel responses by applying " + "random gain coefficients") exgrp_crp = parser_crp.add_mutually_exclusive_group(required=True) exgrp_crp.add_argument("-G", "--gaus-sigma", dest="gaus_sigma", type=float, help="Gaussian sigma in percent from which " + "random gain coefficients are sampled; " + "specified in percent (e.g., 1 for 1%%)") exgrp_crp.add_argument("-I", "--info-file", dest="infofile", help="use the gain coefficients from a " + "(previously saved) corruption information " + "file; will also discard argument --save-info") parser_crp.add_argument("-C", "--clobber", dest="clobber", action="store_true", help="overwrite existing output file") parser_crp.add_argument("-i", "--infile", dest="infile", required=True, help="input FITS cube filename") parser_crp.add_argument("-o", "--outfile", dest="outfile", required=True, help="output corrupted FITS cube") parser_crp.add_argument("--save-info", dest="save_info", action="store_true", help="save the corruption information of each " + "channel/slice to a text file") parser_crp.set_defaults(func=cmd_corrupt) args = parser.parse_args() args.func(args) if __name__ == "__main__": main()