#!/usr/bin/env python3 # # Copyright (c) 2017 Aaron LI # MIT license # """ Rescale the FITS image to increase/decrease the pixel resolution by interpolation, meanwhile keep the image FoV and update FITS WCS. For example, we may simulate the galaxy clusters (and point sources) foreground component with a (much) higher resolution (smaller pixels) compared to other foreground components (e.g., Galactic synchrotron) and EoR signal. After simulating the observed images using OSKAR and WSClean, the output images may in different sizes/resolution, which may cause some troubles in subsequent usage, e.g., power spectrum calculation. """ import sys import argparse from datetime import datetime, timezone import numpy as np from astropy.io import fits from astropy.wcs import WCS from scipy import ndimage class FITSImage: def __init__(self, filename): self.filename = filename self.header, self.image = self.open_image(filename) print("Loaded FITS image from file: %s" % filename) print("FITS image size: %dx%d" % (self.Nx, self.Ny)) print("Pixel size: %.1f [arcsec]" % self.pixelsize) print("FoV: %.1f [deg]" % self.fov[0]) def rescale(self, shape, order=1): try: Ny2, Nx2 = shape except TypeError: Ny2 = Nx2 = shape print("Scale output size: %dx%d" % (Nx2, Ny2)) print("Scale interpolation order: %d" % order) zoom = ((Ny2+0.1)/self.Ny, (Nx2+0.1)/self.Nx) pixelsize_old = self.pixelsize self.image = ndimage.zoom(self.image, zoom=zoom, order=order) self.pixelsize = pixelsize_old / zoom[0] print("Scaled pixel size: %.1f [arcsec]" % self.pixelsize) def crop(self, size): try: xsize, ysize = size # [deg] except TypeError: xsize = ysize = size Nx2 = round(xsize * 3600 / self.pixelsize) Ny2 = round(ysize * 3600 / self.pixelsize) if Nx2 > self.Nx or Ny2 > self.Ny: raise ValueError("Crop region too large!") print("Central crop box size: %dx%d [deg]" % (xsize, ysize)) print("Cropped image size: %dx%d" % (Nx2, Ny2)) xi0 = int((self.Nx-Nx2) / 2) yi0 = int((self.Ny-Ny2) / 2) self.image = self.image[yi0:(yi0+Ny2), xi0:(xi0+Nx2)] def write(self, outfile, clobber=False): header = self.header.copy(strip=True) header.extend(self.wcs.to_header(), update=True) header["DATE"] = (datetime.now(timezone.utc).astimezone().isoformat(), "File creation date") header.add_history(" ".join(sys.argv)) hdu = fits.PrimaryHDU(data=self.image, header=header) try: hdu.writeto(outfile, overwrite=clobber) except TypeError: hdu.writeto(outfile, clobber=clobber) print("Wrote scaled FITS image to file: %s" % outfile) @property def fov(self): # Unit: [deg] return (self.Nx*self.pixelsize/3600, self.Ny*self.pixelsize/3600) @property def pixelsize(self): # Unit: [arcsec] if hasattr(self, "_pixelsize"): return self._pixelsize else: return abs(self.header["CDELT1"]) * 3600 # [deg] -> [arcsec] @pixelsize.setter def pixelsize(self, value): # Unit: [arcsec] self._pixelsize = value @property def Nx(self): return self.image.shape[1] @property def Ny(self): return self.image.shape[0] @property def wcs(self): hdr = self.header w = WCS(naxis=2) w.wcs.equinox = hdr.get("EQUINOX", 2000.0) w.wcs.ctype = [hdr.get("CTYPE1", "RA---SIN"), hdr.get("CTYPE2", "DEC--SIN")] w.wcs.crval = np.array([hdr.get("CRVAL1", 0.0), hdr.get("CRVAL2", 0.0)]) w.wcs.crpix = np.array([self.Ny/2+1, self.Nx/2+1]) w.wcs.cdelt = np.array([-self.pixelsize/3600, self.pixelsize/3600]) w.wcs.cunit = [hdr.get("CUNIT1", "deg"), hdr.get("CUNIT2", "deg")] return w @staticmethod def open_image(infile): """ Open the slice image and return its header and 2D image data. NOTE ---- The input slice image may have following dimensions: * NAXIS=2: [Y, X] * NAXIS=3: [FREQ=1, Y, X] * NAXIS=4: [STOKES=1, FREQ=1, Y, X] NOTE ---- Only open slice image that has only ONE frequency and ONE Stokes parameter. Returns ------- header : `~astropy.io.fits.Header` image : 2D `~numpy.ndarray` The 2D [Y, X] image part of the slice image. """ with fits.open(infile) as f: header = f[0].header data = f[0].data if data.ndim == 2: # NAXIS=2: [Y, X] image = data elif data.ndim == 3 and data.shape[0] == 1: # NAXIS=3: [FREQ=1, Y, X] image = data[0, :, :] elif data.ndim == 4 and data.shape[0] == 1 and data.shape[1] == 1: # NAXIS=4: [STOKES=1, FREQ=1, Y, X] image = data[0, 0, :, :] else: raise ValueError("Slice '{0}' has invalid dimensions: {1}".format( infile, data.shape)) return (header, image) def main(): parser = argparse.ArgumentParser( description="Rescale a FITS image to the desired size/resolution") parser.add_argument("-C", "--clobber", action="store_true", help="overwrite existing output file") parser.add_argument("--order", type=int, default=1, help="scale interpolation order (default: 1)") parser.add_argument("-s", "--size", type=int, required=True, help="output image size (number of pixels)") parser.add_argument("-i", "--infile", required=True, help="input FITS image") parser.add_argument("-o", "--outfile", required=True, help="output FITS image") args = parser.parse_args() fitsimage = FITSImage(args.infile) fitsimage.rescale(shape=args.size, order=args.order) fitsimage.write(args.outfile, clobber=args.clobber) if __name__ == "__main__": main()