#!/usr/bin/env python3 # # Copyright (c) 2017 Weitian LI # MIT License # """ Convert a FITS image to OSKAR sky model for simulation usage. NOTE ---- The OSKAR sky model consists of all the valid (>threshold) pixels from the given image (slice), and fluxes are given in unit [Jy], therefore, the input image should be converted from brightness temperature [K] to unit [Jy/pixel]. References ---------- [1] GitHub: OxfordSKA/OSKAR https://github.com/OxfordSKA/OSKAR [2] OSKAR - Sky Model http://www.oerc.ox.ac.uk/~ska/oskar2/OSKAR-Sky-Model.pdf [3] OSKAR - Settings http://www.oerc.ox.ac.uk/~ska/oskar2/OSKAR-Settings.pdf """ import os import sys import argparse import logging from datetime import datetime import numpy as np import astropy.io.fits as fits import astropy.constants as ac from astropy.wcs import WCS logging.basicConfig(level=logging.INFO) logger = logging.getLogger(os.path.basename(sys.argv[0])) class SkyModel: """ OSKAR sky model. Parameters ---------- image : 2D float `~numpy.ndarray` Input image array; unit [K] (brightness temperature) freq : float Frequency of the input image slice; unit [MHz] pixelsize : float Pixel size of the input image; Unit: [arcsec] ra0, dec0 : float The coordinate of the image center; unit [deg] minvalue : float, optional The minimum threshold for the image values mask : 2D bool `~numpy.ndarray`, optional Use this mask to select the sources of the output sky model, instead of the above ``minvalue``. NOTE: this overwrite the above ``minvalue`` if provided. projection : str, optional The WCS projection for the image; default "TAN" TODO: support "SIN" etc. """ def __init__(self, image, freq, pixelsize, ra0, dec0, minvalue=1e-4, mask=None, projection="TAN"): self.image = image # [K] (brightness temperature) self.freq = freq # [MHz] self.pixelsize = pixelsize # [arcsec] self.ra0 = ra0 # [deg] self.dec0 = dec0 # [deg] self.minvalue = minvalue self.mask = mask self.projection = projection logger.info("SkyModel: Loaded image @ %.2f [MHz]" % freq) @property def wcs(self): """ WCS for the given image slice. """ shape = self.image.shape delta = self.pixelsize / 3600.0 # [arcsec] -> [deg] wcs_ = WCS(naxis=2) wcs_.wcs.ctype = ["RA---"+self.projection, "DEC--"+self.projection] wcs_.wcs.crval = np.array([self.ra0, self.dec0]) wcs_.wcs.crpix = np.array([shape[1], shape[0]]) / 2.0 + 1 wcs_.wcs.cdelt = np.array([delta, delta]) return wcs_ @property def fits_header(self): header = self.wcs.to_header() header["BUNIT"] = ("Jy/pixel", "Brightness unit") header["FREQ"] = (self.freq, "Frequency [MHz]") header["RA0"] = (self.ra0, "Center R.A. [deg]") header["DEC0"] = (self.dec0, "Center Dec. [deg]") header["PixSize"] = (self.pixelsize, "Pixel size [arcsec]") return header @property def factor_K2JyPixel(self): """ Conversion factor to convert brightness unit from 'K' to 'Jy/pixel' http://www.iram.fr/IRAMFR/IS/IS2002/html_1/node187.html """ pixarea = np.deg2rad(self.pixelsize/3600.0) ** 2 # [sr] kB = ac.k_B.si.value # Boltzmann constant [J/K] c0 = ac.c.si.value # speed of light in vacuum [m/s] freqHz = self.freq * 1e6 # [Hz] factor = 2*kB * 1.0e26 * pixarea * (freqHz/c0)**2 return factor @property def ra_dec(self): """ Calculate the (ra, dec) of each image pixel using the above WCS. NOTE: axis ordering difference between numpy array and FITS """ shape = self.image.shape wcs = self.wcs x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0])) pix = np.column_stack([x.flatten(), y.flatten()]) world = wcs.wcs_pix2world(pix, 0) ra = world[:, 0].reshape(shape) dec = world[:, 1].reshape(shape) return (ra, dec) @property def sky(self): """ OSKAR sky model array converted from the input image. Columns ------- ra : (J2000) right ascension (deg) dec : (J2000) declination (deg) flux : source (Stokes I) flux density (Jy) """ if self.mask is None: self.mask = self.image >= self.minvalue logger.info("Use minimum threshold to determine output sky") else: logger.info("Use provided mask to determine output sky") idx = self.mask.flatten() ra, dec = self.ra_dec ra = ra.flatten()[idx] dec = dec.flatten()[idx] flux = self.image.flatten()[idx] * self.factor_K2JyPixel sky_ = np.column_stack([ra, dec, flux]) return sky_ def write_sky_model(self, outfile, clobber=False): """ Write the converted sky model for simulation. """ if os.path.exists(outfile) and (not clobber): raise OSError("OSKAR sky model file already exists: " % outfile) sky = self.sky nsources = sky.shape[0] logger.info("Number of sources: %d" % nsources) header = ("Frequency = %.3f [MHz]\n" % self.freq + "Pixel size = %.2f [arcsec]\n" % self.pixelsize + "RA0 = %.4f [deg]\n" % self.ra0 + "Dec0 = %.4f [deg]\n" % self.dec0 + "Number of sources = %d\n\n" % len(sky) + "R.A.[deg] Dec.[deg] flux[Jy]") np.savetxt(outfile, sky, fmt='%.10e, %.10e, %.10e', header=header) logger.info("Wrote OSKAR sky model to file: %s" % outfile) def write_fits(self, outfile, oldheader=None, clobber=False): if os.path.exists(outfile) and (not clobber): raise OSError("Sky FITS already exists: " % outfile) if oldheader is not None: header = oldheader header.extend(self.fits_header, update=True) else: header = self.fits_header header.add_history(datetime.now().isoformat()) header.add_history(" ".join(sys.argv)) image = self.image image[image < self.minvalue] = np.nan image *= self.factor_K2JyPixel hdu = fits.PrimaryHDU(data=image, header=header) try: hdu.writeto(outfile, overwrite=True) except TypeError: hdu.writeto(outfile, clobber=True) # old astropy versions logger.info("Wrote FITS image of sky model to file: %s" % outfile) def write_mask(self, outfile, clobber=False): if os.path.exists(outfile) and (not clobber): raise OSError("Sky mask already exists: " % outfile) header = self.fits_header header.add_history(datetime.now().isoformat()) header.add_history(" ".join(sys.argv)) hdu = fits.PrimaryHDU(data=self.mask.astype(np.int16), header=header) try: hdu.writeto(outfile, overwrite=True) except TypeError: hdu.writeto(outfile, clobber=True) # old astropy versions logger.info("Wrote mask of sky model to file: %s" % outfile) def main(): parser = argparse.ArgumentParser( description="Convert FITS image to OSKAR sky model") parser.add_argument("-C", "--clobber", dest="clobber", action="store_true", help="overwrite existing file") parser.add_argument("-r", "--ra0", dest="ra0", type=float, default=0.0, help="R.A. of the image center") parser.add_argument("-d", "--dec0", dest="dec0", type=float, default=-27.0, help="Dec. of the image center") parser.add_argument("-p", "--pixel-size", dest="pixelsize", type=float, help="image pixel size [arcsec]; " + "(default: obtain from the FITS header 'PixSize')") parser.add_argument("-f", "--freq", dest="freq", type=float, help="frequency [MHz] the image measured; " + "(default: obtain from the FITS header 'FREQ')") exgrp = parser.add_mutually_exclusive_group() exgrp.add_argument("-m", "--min-value", dest="minvalue", type=float, help="minimum threshold to the output sky model " + "(default: 1e-4, i.e., 0.1 mK)") exgrp.add_argument("-M", "--min-peak-fraction", dest="minpfrac", type=float, help="minimum threshold determined as the fraction " + "the peak value to the output sky model") exgrp.add_argument("--mask", dest="mask", help="use a mask to determine the output sky model") # parser.add_argument("-F", "--osm-fits", dest="osmfits", action="store_true", help="save a FITS version of the converted sky model") parser.add_argument("-o", "--outdir", dest="outdir", help="output directory for sky model files") exgrp.add_argument("--create-mask", dest="create_mask", help="create a FITS mask for the output sky model") parser.add_argument("infile", help="input FITS image") parser.add_argument("outfile", nargs="?", help="output OSKAR sky model (default: " + "save basename as the input FITS image)") args = parser.parse_args() if args.outfile: outfile = args.outfile else: outfile = os.path.splitext(os.path.basename(args.infile))[0] + ".osm" if args.outdir: outfile = os.path.join(args.outdir, outfile) if not os.path.exists(args.outdir): os.mkdir(args.outdir) with fits.open(args.infile) as f: image = f[0].data header = f[0].header logger.info("Read image slice: %s" % args.infile) freq = args.freq if args.freq else header["FREQ"] # [MHz] if args.pixelsize: pixelsize = args.pixelsize # [arcsec] else: pixelsize = header["PixSize"] # [arcsec] logger.info("Frequency: %.2f [MHz]" % freq) logger.info("Pixel size: %.2f [arcsec]" % pixelsize) minvalue = 1e-4 # i.e., 0.1 [mK] mask = None if args.minvalue: minvalue = args.minvalue if args.minpfrac: minvalue = args.minpfrac * image.max() if args.mask: mask = fits.open(args.mask)[0].data.astype(np.bool) logger.info("Minimum threshold: %g [K]" % minvalue) skymodel = SkyModel(image=image, freq=freq, ra0=args.ra0, dec0=args.dec0, pixelsize=pixelsize, minvalue=minvalue, mask=mask) logger.info("Conversion [K] -> [Jy/pixel]: %g" % skymodel.factor_K2JyPixel) skymodel.write_sky_model(outfile, clobber=args.clobber) if args.osmfits: outfits = outfile + ".fits" skymodel.write_fits(outfits, oldheader=header, clobber=args.clobber) if args.create_mask: skymodel.write_mask(args.create_mask, clobber=args.clobber) if __name__ == "__main__": main()