#!/usr/bin/env python3 # # Copyright (c) 2017 Aaron LI # MIT license # # Create image from OSKAR simulated visibility data using `WSClean`. # WSClean: https://sourceforge.net/p/wsclean/ # # 2017-09-01 # import os import sys import re import argparse import subprocess import time import tempfile def printlog(msg, logfile=None, **kwargs): if logfile: files = [sys.stdout, logfile] else: files = [sys.stdout] for f in files: print(msg, file=f, **kwargs) def wsclean(args, dryrun=False, logfile=None): """ Run the WSClean imager with the provided arguments. All the WSClean output is also captured and tee'd into a log file if specified. However, the finer progress report of WSClean does not work due to the buffered I/O ... A randomly generated temporary directory is specified, to avoid the conflict when running multiple WSClean's on the same MeasurementSet. """ tmpdir = tempfile.TemporaryDirectory() cmd = [ "wsclean", "-tempdir", tmpdir.name, ] + [str(arg) for arg in args] # NOTE: Convert all arguments to strings printlog("CMD: %s" % " ".join(cmd), logfile=logfile) if dryrun: print(">>> DRY RUN MODE <<<") tmpdir.cleanup() return t1 = time.perf_counter() with subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) as proc: for line in proc.stdout: printlog(line.strip(), logfile=logfile) retcode = proc.wait() if retcode: raise subprocess.CalledProcessError(retcode, cmd) t2 = time.perf_counter() printlog("-----------------------------------------------------------", logfile=logfile) printlog("WSClean Elapsed time: %.1f [min]" % ((t2-t1)/60), logfile=logfile) printlog("-----------------------------------------------------------", logfile=logfile) tmpdir.cleanup() def main(): parser = argparse.ArgumentParser( description="Run WSClean with more handy arguments") parser.add_argument("-a", "--args", dest="args", help="additional arguments for WSClean, " + "in a quoted string separated by space, e.g.," + "' -simulate-noise 0.001' (NOTE the beginning space!)") parser.add_argument("-d", "--dirty", dest="dirty", action="store_true", help="only create the dirty image by overriding " + "--niter to 0") parser.add_argument("-n", "--dry-run", dest="dryrun", action="store_true", help="do not actually run WSClean") parser.add_argument("--update-model", dest="update_model", action="store_true", help="write/update the MODEL_DATA column in MS") parser.add_argument("--save-weights", dest="save_weights", action="store_true", help="save gridded weights in -weights.fits") parser.add_argument("--save-uv", dest="save_uv", action="store_true", help="save gridded uv plane (i.e., FFT of the " + "residual image) in -uv-{real,imag}.fits") parser.add_argument("--circular-beam", dest="circular_beam", action="store_true", help="force the fitted beam to be circular, i.e., " + "BMIN == BMAJ") parser.add_argument("--beam-size", dest="beam_size", type=float, help="specify the circular beam size (FWHM) in " + "[arcsec] for restoring the clean components; " + "implies --circular-beam") parser.add_argument("--wlayers", dest="wlayers", type=int, help="specify the number of w-layers to use") parser.add_argument("--uv-range", dest="uv_range", default=":", help="uv range [lambda] (i.e., baseline lengths) " + "used for imaging; syntax: ':' " + "(default: ':', i.e., all uv/baselines)") parser.add_argument("-w", "--weight", dest="weight", default="uniform", choices=["uniform", "natural", "briggs"], help="weighting method (default: 'uniform')") parser.add_argument("-B", "--briggs", dest="briggs", type=float, default=0.0, help="Briggs robustness parameter (default: 0); " + "-1 (uniform) -> 1 (natural)") parser.add_argument("-#", "--niter", dest="niter", type=float, default=5e5, help="maximum number of CLEAN iterations " + "(default: 500,000)") parser.add_argument("--gain", dest="gain", type=float, default=0.1, help="CLEAN gain for each minor iteration " + "(default: 0.1)") parser.add_argument("--mgain", dest="mgain", type=float, default=0.85, help="CLEAN gain for major iterations " + "(default: 0.85)") parser.add_argument("-s", "--size", dest="size", type=int, required=True, help="output image size (pixel number on a side)") parser.add_argument("-p", "--pixelsize", dest="pixelsize", type=float, required=True, help="output image pixel size [arcsec]") parser.add_argument("-G", "--taper-gaus", dest="taper_gaus", type=float, help="taper the weights with a Gaussian function " + "to reduce the contribution of long baselines. " + "Gaussian beam size in [arcsec].") parser.add_argument("--fit-spec-order", dest="fit_spec_order", type=int, help="do joined-channel CLEAN by fitting the " + "spectra with [order] polynomial in normal-space") # exgrp = parser.add_mutually_exclusive_group() exgrp.add_argument("-S", "--threshold-nsigma", dest="threshold_nsigma", type=float, default=2.0, help="estimate the noise level and stop at " + "nsigma* (default: 2.0 )") exgrp.add_argument("-t", "--threshold", dest="threshold", type=float, help="stopping CLEAN threshold [mJy]") # parser.add_argument("-N", "--name", dest="name", required=True, help="filename prefix for the output files") parser.add_argument("-m", "--ms", nargs="+", help="input visibility MSs") args = parser.parse_args() nms = len(args.ms) # i.e., number of MS == number of channels cmdargs = [ "-verbose", "-log-time", "-pol", "XX", # OSKAR "Scalar" simulation only gives "XX" component "-make-psf", # always make the PSF, even no cleaning performed ] if args.dirty: cmdargs += ["-niter", 0] # make dirty image only else: cmdargs += ["-niter", int(args.niter)] if args.weight == "uniform": cmdargs += ["-weight", "uniform", "-weighting-rank-filter", 3] elif args.weight == "briggs": cmdargs += ["-weight", "briggs", args.briggs] else: cmdargs += ["-weight", args.weight] # natural cmdargs += ["-gain", args.gain] cmdargs += ["-mgain", args.mgain] cmdargs += ["-size", args.size, args.size] cmdargs += ["-scale", "{0}asec".format(args.pixelsize)] if args.fit_spec_order: cmdargs += ["-joinchannels", "-channelsout", nms, "-fit-spectral-pol", args.fit_spec_order+1] if args.update_model: cmdargs += ["-update-model-required"] else: cmdargs += ["-no-update-model-required"] if args.save_weights: cmdargs += ["-saveweights"] if args.save_uv: cmdargs += ["-saveuv"] if args.circular_beam: cmdargs += ["-circularbeam"] if args.beam_size: cmdargs += ["-beamsize", args.beam_size] if args.wlayers: cmdargs += ["-nwlayers", args.wlayers] # uv/baseline range uvmin, uvmax = args.uv_range.strip().split(":") if uvmin: cmdargs += ["-minuv-l", float(uvmin)] if uvmax: cmdargs += ["-maxuv-l", float(uvmax)] if args.threshold: cmdargs += ["-threshold", args.threshold*1e-3] # [mJy] -> [Jy] else: cmdargs += ["-auto-threshold", args.threshold_nsigma] if args.taper_gaus: cmdargs += ["-taper-gaussian", args.taper_gaus] # additional WSClean arguments if args.args: extra_args = re.split(r"\s+", args.args.strip()) print("Additional WSClean arguments:", extra_args) cmdargs += extra_args nameprefix = args.name.rstrip("-_") cmdargs += ["-name", nameprefix] cmdargs += args.ms if args.dryrun: logfile = None else: logfilename = nameprefix + "-wsclean.log" logfile = open(logfilename, "w") logfile.write(" ".join(sys.argv) + "\n") wsclean(cmdargs, dryrun=args.dryrun, logfile=logfile) if args.dirty and not args.dryrun: # Remove the output "-image" since it is identical to "-dirty" os.remove(nameprefix+"-image.fits") if logfile: logfile.close() if __name__ == "__main__": main()