#!/usr/bin/env python3 # # Copyright (c) 2017 Aaron LI # MIT license # # Create image from OSKAR simulated visibility data using `WSClean`. # WSClean: https://sourceforge.net/p/wsclean/ # # 2017-09-01 # import os import re import argparse import subprocess import time def wsclean(args, dryrun=False): cmd = ["wsclean"] + args print("CMD: %s" % " ".join(cmd)) if dryrun: print(">>> DRY RUN MODE <<<") return t1 = time.perf_counter() subprocess.check_call(cmd) t2 = time.perf_counter() print("-----------------------------------------------------------") print("WSClean Elapsed time: %.1f [min]" % ((t2-t1)/60)) print("-----------------------------------------------------------") def main(): parser = argparse.ArgumentParser(description="Run WSClean") parser.add_argument("-n", "--dry-run", dest="dryrun", action="store_true", help="do not actually run WSClean") parser.add_argument("-a", "--args", dest="args", help="additional arguments for WSClean " + "(in a quoted string separated by space)") parser.add_argument("-d", "--dirty", dest="dirty", action="store_true", help="only create dirty images (by setting niter=0)") parser.add_argument("--update-model", dest="update_model", action="store_true", help="update the MODEL_DATA column in MS") parser.add_argument("--save-weights", dest="save_weights", action="store_true", help="save the gridded weights in -weights.fits") parser.add_argument("-w", "--weight", dest="weight", default="briggs", choices=["uniform", "natural", "briggs"], help="weighting method (default: 'briggs')") parser.add_argument("--briggs", dest="briggs", type=float, default=0.0, help="Briggs weight parameter (default: 0)") parser.add_argument("--niter", dest="niter", type=int, default=100000, help="maximum number of CLEAN iterations") parser.add_argument("--gain", dest="gain", type=float, default=0.1, help="CLEAN gain for each minor iteration") parser.add_argument("--mgain", dest="mgain", type=float, default=0.85, help="CLEAN gain for major iterations") parser.add_argument("-s", "--size", dest="size", type=int, required=True, help="output image size (pixel number on a side)") parser.add_argument("-p", "--pixelsize", dest="pixelsize", type=float, required=True, help="output image pixel size [arcsec]") parser.add_argument("--taper-gaus", dest="taper_gaus", type=float, help="taper the weights with a Gaussian function " + "to reduce the contribution of long baselines. " + "Gaussian beam size in [arcsec].") parser.add_argument("--fit-spec-order", dest="fit_spec_order", type=int, help="do joined-channel CLEAN by fitting the " + "spectra with [order] polynomial in normal-space") # exgrp = parser.add_mutually_exclusive_group() exgrp.add_argument("--threshold-auto", dest="threshold_auto", type=float, default=1.5, help="estimate noise level and stop at *") exgrp.add_argument("--threshold", dest="threshold", type=float, help="stopping CLEAN threshold [Jy]") # parser.add_argument("-N", "--name", dest="name", required=True, help="filename prefix for the output files") parser.add_argument("-m", "--ms", nargs="+", help="input visibility MSs") args = parser.parse_args() nms = len(args.ms) # i.e., number of MS == number of channels cmdargs = [ "-verbose", "-log-time", "-pol", "XX", # OSKAR "Scalar" simulation only give "XX" component "-make-psf", # always make the PSF, even no cleaning performed "-tempdir", "/tmp", ] if args.dirty: cmdargs += ["-niter", str(0)] # make dirty image only else: cmdargs += ["-niter", str(args.niter)] if args.weight == "uniform": cmdargs += ["-weight", "uniform", "-weighting-rank-filter", "3"] elif args.weight == "briggs": cmdargs += ["-weight", "briggs", str(args.briggs)] else: cmdargs += ["-weight", args.weight] cmdargs += ["-gain", str(args.gain)] cmdargs += ["-mgain", str(args.mgain)] cmdargs += ["-size", str(args.size), str(args.size)] cmdargs += ["-scale", "{0}asec".format(args.pixelsize)] if args.fit_spec_order: cmdargs += ["-joinchannels", "-channelsout", str(nms), "-fit-spectral-pol", str(args.fit_spec_order+1)] if args.update_model: cmdargs += ["-update-model-required"] else: cmdargs += ["-no-update-model-required"] if args.save_weights: cmdargs += ["-saveweights"] if args.threshold: cmdargs += ["-threshold", str(args.threshold)] else: cmdargs += ["-auto-threshold", str(args.threshold_auto)] if args.taper_gaus: cmdargs += ["-taper-gaussian", str(args.taper_gaus)] # additional WSClean arguments if args.args: extra_args = re.split(r"\s+", args.args.strip()) print("Additional WSClean arguments:", extra_args) cmdargs += extra_args nameprefix = args.name.rstrip("-_") cmdargs += ["-name", nameprefix] cmdargs += args.ms wsclean(cmdargs, dryrun=args.dryrun) if args.dirty and not args.dryrun: # Remove the output "-image" since it is identical to "-dirty" os.remove(nameprefix+"-image.fits") if __name__ == "__main__": main()