#!/usr/bin/env python3 # # Copyright (c) 2017 Weitna LI # MIT License # """ Average the 2D power spectrum within the EoR window (i.e., excluding the foreground contaminated wedge) to derive the 1D spherically averaged power spectrum. """ import os import argparse import numpy as np import matplotlib import matplotlib.style from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from eor_window import PS2D # Matplotlib settings matplotlib.style.use("ggplot") for k, v in [("font.family", "monospace"), ("image.cmap", "jet"), ("xtick.major.size", 7.0), ("xtick.major.width", 2.0), ("xtick.minor.size", 4.0), ("xtick.minor.width", 1.5), ("ytick.major.size", 7.0), ("ytick.major.width", 2.0), ("ytick.minor.size", 4.0), ("ytick.minor.width", 1.5)]: matplotlib.rcParams[k] = v class PS1D: """ Calculate the 1D spherically averaged power spectrum from 2D PS. """ def __init__(self, ps2d): self.ps2d = ps2d self.data = ps2d.ps2d # shape: [n_k_los, n_k_perp] self.data_err = ps2d.ps2d_err @property def k_perp(self): return self.ps2d.k_perp @property def k_los(self): return self.ps2d.k_los @property def eor_window(self): return self.ps2d.eor_window() def calc_ps1d(self, normalize=True): """ Calculate the 1D spherically averaged power spectrum by averaging the 2D cylindrical power spectrum. Parameters ---------- normalize : bool Whether to normalize the 1D power spectrum to obtain the dimensionless power spectrum, i.e., Δ^2(k) = (k^3 / (2*π^2)) P(k) """ eor_window = self.eor_window data = self.data.copy() data_err = self.data_err.copy() data[~eor_window] = np.nan data_err[~eor_window] = np.nan k_perp = self.k_perp k_los = self.k_los dk_perp = k_perp[1] - k_perp[0] dk_los = k_los[1] - k_los[0] dk = np.sqrt(dk_perp * dk_los) print("dk = %.6f [Mpc^-1]" % dk) k_max = np.sqrt(k_perp[-1]**2 + k_los[-1]**2) nk = int(k_max / dk) + 1 print("Number of k points: %d" % nk) ps1d_k = np.arange(nk) * dk # PS1D's 3 columns: [k, ps1d, ps1d_err] ps1d = np.zeros(shape=(nk, 3)) ps1d[:, 0] = ps1d_k print("Averaging 2D power spectrum ...") mx, my = np.meshgrid(k_perp, k_los) mk = np.sqrt(mx**2 + my**2) for i, k in enumerate(ps1d_k): ii, jj = (mk <= k).nonzero() mk[ii, jj] = np.inf cells = data[ii, jj] cells = cells[np.isfinite(cells)] if len(cells) > 0: ps1d[i, 1] = np.mean(cells) cells = data_err[ii, jj] cells = cells[np.isfinite(cells)] ps1d[i, 2] = np.sqrt(np.sum((cells/len(cells))**2)) if normalize: coef = ps1d_k**3 / (2*np.pi**2) ps1d[:, 1] *= coef ps1d[:, 2] *= coef self.ps1d_normalized = True else: self.ps1d_normalized = False self.ps1d = ps1d return ps1d def save(self, outfile): if self.ps1d_normalized: ps1d_desc = "normalized power [K^2]" else: ps1d_desc = "power [K^2 Mpc^3]" header = [ "EoR window definition:", "+ FoV: %f [deg]" % self.ps2d.fov, "+ e_ConvWidth: %f" % self.ps2d.e, "+ k_perp_min: %f [Mpc^-1]" % self.ps2d.k_perp_min, "+ k_perp_max: %f [Mpc^-1]" % self.ps2d.k_perp_max, "+ k_los_min: %f [Mpc^-1]" % self.ps2d.k_los_min, "+ k_los_max: %f [Mpc^-1]" % self.ps2d.k_los_max, "", "Columns:", "1. k: wavenumber [Mpc^-1]", "2. ps1d: %s" % ps1d_desc, "ps1d_err: power errors", "", "k ps1d ps1d_err", ] np.savetxt(outfile, self.ps1d, header="\n".join(header)) print("Saved 1D power spectrum to file: %s" % outfile) def plot(self, ax): ps1d = self.ps1d if self.ps1d_normalized: ylabel = r"$\Delta^2(k)$ [K$^2$]" else: ylabel = r"$P(k)$ [K$^2$ Mpc$^3$]" x = ps1d[:, 0] y = ps1d[:, 1] yerr = ps1d[:, 2] ax.errorbar(x[1:], y[1:], yerr=yerr[1:], fmt="none") ax.plot(x[1:], y[1:], marker="o") ax.set(xscale="log", yscale="log", xlabel=r"k [Mpc$^{-1}$]", ylabel=ylabel, title="1D Spherically Averaged Power Spectrum") return ax def main(): parser = argparse.ArgumentParser( description="Calculate 1D power spectrum within the EoR window") parser.add_argument("-C", "--clobber", dest="clobber", action="store_true", help="overwrite the output files if already exist") parser.add_argument("-F", "--fov", dest="fov", type=float, required=True, help="instrumental FoV to determine the EoR window; " + "SKA1-Low has FoV ~ 3.12 / (nu/200MHz) [deg], i.e., " + "~5.03 @ 124, ~3.95 @ 158, ~3.18 @ 196") parser.add_argument("-e", "--conv-width", dest="conv_width", type=float, default=3.0, help="characteristic convolution width (default: 3.0)") parser.add_argument("-p", "--k-perp-min", dest="k_perp_min", type=float, help="minimum k wavenumber perpendicular to LoS; " + "unit: [Mpc^-1]") parser.add_argument("-P", "--k-perp-max", dest="k_perp_max", type=float, help="maximum k wavenumber perpendicular to LoS") parser.add_argument("-l", "--k-los-min", dest="k_los_min", type=float, help="minimum k wavenumber along LoS") parser.add_argument("-L", "--k-los-max", dest="k_los_max", type=float, help="maximum k wavenumber along LoS") parser.add_argument("--no-plot", dest="noplot", action="store_true", help="do not plot and save the calculated 1D power " + "power within the EoR window") parser.add_argument("-i", "--infile", dest="infile", required=True, help="2D power spectrum FITS file") parser.add_argument("-o", "--outfile", dest="outfile", required=True, help="output TXT file to save the PSD data") args = parser.parse_args() if (not args.clobber) and os.path.exists(args.outfile): raise OSError("outfile '%s' already exists" % args.outfile) ps2d = PS2D(args.infile, fov=args.fov, e=args.conv_width, k_perp_min=args.k_perp_min, k_perp_max=args.k_perp_max, k_los_min=args.k_los_min, k_los_max=args.k_los_max) ps1d = PS1D(ps2d) ps1d.calc_ps1d() ps1d.save(args.outfile) if not args.noplot: fig = Figure(figsize=(8, 8), dpi=150) FigureCanvas(fig) ax = fig.add_subplot(1, 1, 1) ps1d.plot(ax=ax) fig.tight_layout() plotfile = os.path.splitext(args.outfile)[0] + ".png" fig.savefig(plotfile) print("Plotted 1D power spectrum within EoR window: %s" % plotfile) if __name__ == "__main__": main()