#!/usr/bin/env python3 # # Copyright (c) 2017 Weitian LI # MIT license # """ Calculate the 2D cylindrical-averaged power spectrum from the 3D image spectral cube. References ---------- .. [liu2014] Liu, Parsons & Trott 2014, PhRvD, 90, 023018 http://adsabs.harvard.edu/abs/2014PhRvD..90b3018L Appendix.A .. [morales2004] Morales & Hewitt 2004, ApJ, 615, 7 http://adsabs.harvard.edu/abs/2004ApJ...615....7M Sec.3 .. [matlab-psd-fft] MATLAB - Power Spectral Density Estimates Using FFT https://cn.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html .. [matlab-answer-psd] MATLAB Answers - How to create power spectral density from FFT https://cn.mathworks.com/matlabcentral/answers/43548-how-to-create-power-spectral-density-from-fft-fourier-transform """ import os import sys import argparse import logging import numpy as np from scipy import fftpack from scipy import signal from astropy.io import fits from astropy.wcs import WCS from astropy.cosmology import FlatLambdaCDM import astropy.constants as ac logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s", datefmt="%H:%M:%S") logger = logging.getLogger(os.path.basename(sys.argv[0])) # HI line frequency freq21cm = 1420.405751 # [MHz] # Adopted cosmology H0 = 71.0 # [km/s/Mpc] OmegaM0 = 0.27 cosmo = FlatLambdaCDM(H0=H0, Om0=OmegaM0) def freq2z(freq): z = freq21cm / freq - 1.0 return z def get_frequencies(wcs, nfreq): pix = np.zeros(shape=(nfreq, 3), dtype=np.int) pix[:, -1] = np.arange(nfreq) world = wcs.wcs_pix2world(pix, 0) freqMHz = world[:, -1] / 1e6 return freqMHz class PS2D: """ 2D cylindrically averaged power spectrum NOTE ---- * Cube dimensions: [nfreq, height, width] <-> [Z, Y, X] * Cube data unit: [K] (brightness temperature) """ def __init__(self, cube, pixelsize, frequencies, window_name=None, window_width="extended"): logger.info("Initializing PS2D instance ...") self.cube = cube self.pixelsize = pixelsize # [arcsec] logger.info("Loaded data cube: %dx%d (cells) * %d (channels)" % (self.Nx, self.Ny, self.Nz)) logger.info("Image pixel size: %.2f [arcsec]" % pixelsize) self.frequencies = np.asarray(frequencies) # [MHz] self.nfreq = len(self.frequencies) self.dfreq = self.frequencies[1] - self.frequencies[0] # [MHz] if self.nfreq != self.Nz: raise RuntimeError("data cube and frequencies do not match!") logger.info("Frequency band: %.2f-%.2f [MHz]" % (self.frequencies.min(), self.frequencies.max())) logger.info("Frequency channel width: %.2f [MHz], %d channels" % (self.dfreq, self.nfreq)) # Central frequency and redshift self.freqc = self.frequencies.mean() self.zc = freq2z(self.freqc) logger.info("Central frequency %.2f [MHz] <-> redshift %.4f" % (self.freqc, self.zc)) # Transverse comoving distance at zc; unit: [Mpc] self.DMz = cosmo.comoving_transverse_distance(self.zc).value self.window_name = window_name self.window_width = window_width self.window = self.gen_window(name=window_name, width=window_width) def gen_window(self, name=None, width="extended"): if name is None: return None window_func = getattr(signal.windows, name) if width == "extended": w = window_func(self.nfreq, sym=False) ex = 1.0 / (w.sum() / self.nfreq) width_pix = int(ex * self.nfreq) else: width_pix = self.nfreq window = window_func(width_pix, sym=False) if len(window) > self.nfreq: # cut the filter midx = int(len(window) / 2) # index of the peak element nleft = int(self.nfreq / 2) # number of element on the left nright = int((self.nfreq-1) / 2) # number of element on the right window = window[(midx-nleft):(midx+nright+1)] logger.info("Generated window: %s (%s/%d)" % (name, width, width_pix)) return window def pad_cube(self): """ Pad the image cube to be square in spatial dimensions. """ if self.Nx != self.Ny: logger.info("Padding image to be square ...") raise NotImplementedError def calc_ps3d(self): """ Calculate the 3D power spectrum of the image cube. The power spectrum is properly normalized to have dimension of [K^2 Mpc^3]. """ if self.window is not None: logger.info("Applying window along frequency axis ...") cube2 = self.cube * self.window[:, np.newaxis, np.newaxis] else: cube2 = self.cube.astype(np.float) logger.info("Calculating 3D FFT ...") cubefft = fftpack.fftshift(fftpack.fftn(cube2)) logger.info("Calculating 3D PS ...") ps3d = np.abs(cubefft) ** 2 # [K^2] # Normalization norm1 = 1 / (self.Nx * self.Ny * self.Nz) norm2 = 1 / (self.fs_xy**2 * self.fs_z) # [Mpc^3] norm3 = 1 / (2*np.pi)**3 self.ps3d = ps3d * norm1 * norm2 * norm3 # [K^2 Mpc^3] return self.ps3d def calc_ps2d(self): """ Calculate the 2D power spectrum by cylindrically binning the above 3D power spectrum. """ logger.info("Calculating 2D power spectrum ...") n_k_perp = len(self.k_perp) n_k_los = len(self.k_los) ps2d = np.zeros(shape=(n_k_los, n_k_perp)) # (k_los, k_perp) eps = 1e-8 ic_xy = (np.abs(self.k_xy) < eps).nonzero()[0][0] ic_z = (np.abs(self.k_z) < eps).nonzero()[0][0] p_xy = np.arange(self.Nx) - ic_xy p_z = np.abs(np.arange(self.Nz) - ic_z) mx, my = np.meshgrid(p_xy, p_xy) rho, phi = self.cart2pol(mx, my) rho = np.around(rho).astype(np.int) logger.info("Cylindrically averaging 3D power spectrum ...") for r in range(n_k_perp): ix, iy = (rho == r).nonzero() for s in range(n_k_los): iz = (p_z == s).nonzero()[0] cells = np.concatenate([self.ps3d[z, iy, ix] for z in iz]) ps2d[s, r] = cells.mean() self.ps2d = ps2d return ps2d def save(self, outfile, clobber=False): """ Save the calculated 2D power spectrum as a FITS image. """ hdu = fits.PrimaryHDU(data=self.ps2d, header=self.header) try: hdu.writeto(outfile, overwrite=clobber) except TypeError: hdu.writeto(outfile, clobber=clobber) logger.info("Wrote 2D power spectrum to file: %s" % outfile) @property def Nx(self): """ Number of cells/pixels along the X axis. Cube shape/dimensions: [Z, Y, X] """ return self.cube.shape[2] @property def Ny(self): return self.cube.shape[1] @property def Nz(self): return self.cube.shape[0] @property def d_xy(self): """ The sampling interval along the (X, Y) spatial dimensions, translated from the pixel size. Unit: [Mpc] Reference: Ref.[liu2014].Eq.(A7) """ pixelsize = self.pixelsize / 3600 # [arcsec] -> [deg] d_xy = self.DMz * np.deg2rad(pixelsize) return d_xy @property def d_z(self): """ The sampling interval along the Z line-of-sight dimension, translated from the frequency channel width. Unit: [Mpc] Reference: Ref.[liu2014].Eq.(A9) """ dfreq = self.dfreq # [MHz] c = ac.c.si.value # [m/s] Ez = cosmo.efunc(self.zc) Hz = Ez * H0 * 1000.0 # [m/s/Mpc] d_z = c * (1+self.zc)**2 * dfreq / Hz / freq21cm return d_z @property def fs_xy(self): """ The sampling frequency along the (X, Y) spatial dimensions: Fs = 1/T (inverse of interval) Unit: [Mpc^-1] """ return 1/self.d_xy @property def fs_z(self): """ The sampling frequency along the Z line-of-sight dimension. Unit: [Mpc^-1] """ return 1/self.d_z @property def df_xy(self): """ The spatial frequency bin size (i.e., resolution) along the (X, Y) dimensions. Unit: [Mpc^-1] """ return self.fs_xy / self.Nx @property def df_z(self): """ The spatial frequency bin size (i.e., resolution) along the line-of-sight (Z) direction. Unit: [Mpc^-1] """ return self.fs_z / self.Nz @property def dk_xy(self): """ The k-space (spatial) frequency bin size (i.e., resolution). """ return 2*np.pi * self.df_xy @property def dk_z(self): return 2*np.pi * self.df_z @property def k_xy(self): """ The k-space coordinates along the (X, Y) spatial dimensions, which describe the spatial frequencies. NOTE: k = 2*pi * f, where "f" is the spatial frequencies, and the Fourier dual to spatial transverse distances x/y. Unit: [Mpc^-1] """ f_xy = fftpack.fftshift(fftpack.fftfreq(self.Nx, d=self.d_xy)) k_xy = 2*np.pi * f_xy return k_xy @property def k_z(self): f_z = fftpack.fftshift(fftpack.fftfreq(self.Nz, d=self.d_z)) k_z = 2*np.pi * f_z return k_z @property def k_perp(self): """ Comoving wavenumbers perpendicular to the LoS NOTE: The Nyquist frequency just located at the first element after fftshift when the length is even, and it is negative. """ k_x = self.k_xy return k_x[k_x >= 0] @property def k_los(self): """ Comoving wavenumbers along the LoS """ k_z = self.k_z return k_z[k_z >= 0] @staticmethod def cart2pol(x, y): """ Convert Cartesian coordinates to polar coordinates. """ rho = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) return (rho, phi) @property def header(self): dk_xy = self.dk_xy dk_z = self.dk_z hdr = fits.Header() hdr["HDUNAME"] = ("PS2D", "block name") hdr["CONTENT"] = ("2D cylindrically averaged power spectrum", "data product") hdr["BUNIT"] = ("K^2 Mpc^3", "data unit") # Physical coordinates: IRAF LTM/LTV # Li{Image} = LTMi_i * Pi{Physical} + LTVi # Reference: ftp://iraf.noao.edu/iraf/web/projects/fitswcs/specwcs.html hdr["LTV1"] = 0.0 hdr["LTM1_1"] = 1.0 / dk_xy hdr["LTV2"] = 0.0 hdr["LTM2_2"] = 1.0 / dk_z # WCS physical coordinates hdr["WCSTY1P"] = "PHYSICAL" hdr["CTYPE1P"] = ("k_perp", "wavenumbers perpendicular to LoS") hdr["CRPIX1P"] = (0.5, "reference pixel") hdr["CRVAL1P"] = (0.0, "coordinate of the reference pixel") hdr["CDELT1P"] = (dk_xy, "coordinate delta/step") hdr["CUNIT1P"] = ("Mpc^-1", "coordinate unit") hdr["WCSTY2P"] = "PHYSICAL" hdr["CTYPE2P"] = ("k_los", "wavenumbers along LoS") hdr["CRPIX2P"] = (0.5, "reference pixel") hdr["CRVAL2P"] = (0.0, "coordinate of the reference pixel") hdr["CDELT2P"] = (dk_z, "coordinate delta/step") hdr["CUNIT2P"] = ("Mpc^-1", "coordinate unit") # Data information hdr["PixSize"] = (self.pixelsize, "[arcsec] data cube pixel size") hdr["Z_C"] = (self.zc, "data cube central redshift") hdr["Freq_C"] = (self.freqc, "[MHz] data cube central frequency") hdr["Freq_Min"] = (self.frequencies.min(), "[MHz] data cube minimum frequency") hdr["Freq_Max"] = (self.frequencies.max(), "[MHz] data cube maximum frequency") # Command history hdr.add_history(" ".join(sys.argv)) return hdr def main(): parser = argparse.ArgumentParser( description="Calculate 2D power spectrum from 3D image cube") parser.add_argument("-C", "--clobber", dest="clobber", action="store_true", help="overwrite existing file") parser.add_argument("-p", "--pixelsize", dest="pixelsize", type=float, help="image cube pixel size [arcsec] (default: " + "obtain from FITS header WCS info)") parser.add_argument("--window", dest="window", choices=["nuttall"], help="apply window along frequency axis " + "(default: None)") parser.add_argument("-i", "--infile", dest="infile", required=True, help="input FITS image cube") parser.add_argument("-o", "--outfile", dest="outfile", required=True, help="output 2D power spectrum FITS file") args = parser.parse_args() with fits.open(args.infile) as f: cube = f[0].data wcs = WCS(f[0].header) nfreq = cube.shape[0] frequencies = get_frequencies(wcs, nfreq) if args.pixelsize: pixelsize = args.pixelsize # [arcsec] else: pixelsize = abs(wcs.wcs.cdelt[0]) * 3600 # [deg] -> [arcsec] ps2d = PS2D(cube=cube, pixelsize=pixelsize, frequencies=frequencies, window_name=args.window) ps2d.calc_ps3d() ps2d.calc_ps2d() ps2d.save(outfile=args.outfile, clobber=args.clobber) if __name__ == "__main__": main()