#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Credit: # [1] Radially averaged power spectrum of 2D real-valued matrix # Evan Ruzanski # 'raPsd2d.m' # https://www.mathworks.com/matlabcentral/fileexchange/23636-radially-averaged-power-spectrum-of-2d-real-valued-matrix # # XXX: # * If the input image is NOT SQUARE; then are the horizontal frequencies # the same as the vertical frequencies ?? # # Aaron LI # Created: 2015-04-22 # Updated: 2016-04-28 # # Changelog: # 2016-04-28: # * Fix wrong meshgrid with respect to the shift zero-frequency component # * Use "numpy.fft" instead of "scipy.fftpack" # * Split method "pad_square()" from "calc_radial_psd()" # * Hide numpy warning when dividing by zero # * Add method "AstroImage.fix_shapes()" # * Add support for background subtraction and exposure correction # * Show verbose information during calculation # * Add class "AstroImage" # * Set default value for 'args.png' # * Rename from 'radialPSD2d.py' to 'calc_radial_psd.py' # 2016-04-26: # * Adjust plot function # * Update normalize argument; Add pixel argument # 2016-04-25: # * Update plot function # * Add command line scripting support # * Encapsulate the functions within class 'PSD' # * Update docs/comments # """ Compute the radially averaged power spectral density (i.e., power spectrum). """ __version__ = "0.5.0" __date__ = "2016-04-28" import sys import os import argparse import numpy as np from astropy.io import fits import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure plt.style.use("ggplot") class PSD: """ Computes the 2D power spectral density and the radially averaged power spectral density (i.e., 1D power spectrum). """ # 2D image data img = None # value and unit of 1 pixel for the input image pixel = (None, None) # whether to normalize the power spectral density by image size normalize = True # 2D power spectral density psd2d = None # 1D (radially averaged) power spectral density freqs = None psd1d = None psd1d_err = None def __init__(self, img, pixel=(1.0, "pixel"), normalize=True): self.img = img.astype(np.float) self.pixel = pixel self.normalize = normalize def calc_psd2d(self): """ Computes the 2D power spectral density of the given image. Note that the low frequency components are shifted to the center of the FFT'ed image. NOTE: The zero-frequency component is shifted to position of index (0-based) (ceil((n-1) / 2), ceil((m-1) / 2)), where (n, m) are the number of rows and columns of the image/psd2d. Return: 2D power spectral density, which is dimensionless if normalized, otherwise has unit ${pixel_unit}^2. """ print("Calculating 2D power spectral density ... ", end="", flush=True) rows, cols = self.img.shape # Compute the power spectral density (i.e., power spectrum) imgf = np.fft.fftshift(np.fft.fft2(self.img)) if self.normalize: norm = rows * cols * self.pixel[0]**2 else: norm = 1.0 # Do not normalize self.psd2d = (np.abs(imgf) / norm) ** 2 print("DONE", flush=True) return self.psd2d def calc_radial_psd1d(self): """ Computes the radially averaged power spectral density from the provided 2D power spectral density. Return: (freqs, radial_psd, radial_psd_err) freqs: spatial freqencies (unit: ${pixel_unit}^(-1)) radial_psd: radially averaged power spectral density for each frequency radial_psd_err: standard deviations of each radial_psd """ print("Calculating radial (1D) power spectral density ... ", end="", flush=True) print("padding ... ", end="", flush=True) psd2d = self.pad_square(self.psd2d, value=np.nan) dim = psd2d.shape[0] dim_half = (dim+1) // 2 # NOTE: # The zero-frequency component is shifted to position of index # (0-based): (ceil((n-1) / 2), ceil((m-1) / 2)) px = np.arange(dim_half-dim, dim_half) x, y = np.meshgrid(px, px) rho, phi = self.cart2pol(x, y) rho = np.around(rho).astype(np.int) radial_psd = np.zeros(dim_half) radial_psd_err = np.zeros(dim_half) print("radially averaging ... ", end="", flush=True) for r in range(dim_half): # Get the indices of the elements satisfying rho[i,j]==r ii, jj = (rho == r).nonzero() # Calculate the mean value at a given radii data = psd2d[ii, jj] radial_psd[r] = np.nanmean(data) radial_psd_err[r] = np.nanstd(data) # Calculate frequencies f = np.fft.fftfreq(dim, d=self.pixel[0]) freqs = np.abs(f[:dim_half]) # self.freqs = freqs self.psd1d = radial_psd self.psd1d_err = radial_psd_err print("DONE", flush=True) return (freqs, radial_psd, radial_psd_err) @staticmethod def cart2pol(x, y): """ Convert Cartesian coordinates to polar coordinates. """ rho = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) return (rho, phi) @staticmethod def pol2cart(rho, phi): """ Convert polar coordinates to Cartesian coordinates. """ x = rho * np.cos(phi) y = rho * np.sin(phi) return (x, y) @staticmethod def pad_square(data, value=np.nan): """ Symmetrically pad the supplied data matrix to make it square. The padding rows are equally added to the top and bottom, as well as the columns to the left and right sides. The padded rows/columns are filled with the specified value. """ mat = data.copy() rows, cols = mat.shape dim_diff = abs(rows - cols) dim_max = max(rows, cols) if rows > cols: # pad columns if dim_diff // 2 == 0: cols_left = np.zeros((rows, dim_diff/2)) cols_left[:] = value cols_right = np.zeros((rows, dim_diff/2)) cols_right[:] = value mat = np.hstack((cols_left, mat, cols_right)) else: cols_left = np.zeros((rows, np.floor(dim_diff/2))) cols_left[:] = value cols_right = np.zeros((rows, np.floor(dim_diff/2)+1)) cols_right[:] = value mat = np.hstack((cols_left, mat, cols_right)) elif rows < cols: # pad rows if dim_diff // 2 == 0: rows_top = np.zeros((dim_diff/2, cols)) rows_top[:] = value rows_bottom = np.zeros((dim_diff/2, cols)) rows_bottom[:] = value mat = np.vstack((rows_top, mat, rows_bottom)) else: rows_top = np.zeros((np.floor(dim_diff/2), cols)) rows_top[:] = value rows_bottom = np.zeros((np.floor(dim_diff/2)+1, cols)) rows_bottom[:] = value mat = np.vstack((rows_top, mat, rows_bottom)) return mat def plot(self, ax=None, fig=None): """ Make a plot of the radial (1D) PSD with matplotlib. """ if ax is None: fig, ax = plt.subplots(1, 1) # xmin = self.freqs[1] / 1.2 # ignore the first 0 xmax = self.freqs[-1] ymin = np.nanmin(self.psd1d) / 10.0 ymax = np.nanmax(self.psd1d + self.psd1d_err) # eb = ax.errorbar(self.freqs, self.psd1d, yerr=self.psd1d_err, fmt="none") ax.plot(self.freqs, self.psd1d, "ko") ax.set_xscale("log") ax.set_yscale("log") ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_title("Radially Averaged Power Spectral Density") ax.set_xlabel(r"k (%s$^{-1}$)" % self.pixel[1]) if self.normalize: ax.set_ylabel("Power") else: ax.set_ylabel(r"Power (%s$^2$)" % self.pixel[1]) fig.tight_layout() return (fig, ax) class AstroImage: """ Manipulate the astronimcal counts image, as well as the corresponding exposure map and background map. """ # input counts image image = None # exposure map with respect to the input counts image expmap = None # background map (e.g., stowed background) bkgmap = None # exposure time of the input image exposure = None # exposure time of the background map exposure_bkg = None def __init__(self, image, expmap=None, bkgmap=None): self.load_image(image) self.load_expmap(expmap) self.load_bkgmap(bkgmap) @staticmethod def open_image(infile): """ Open the slice image and return its header and 2D image data. NOTE ---- The input slice image may have following dimensions: * NAXIS=2: [Y, X] * NAXIS=3: [FREQ=1, Y, X] * NAXIS=4: [STOKES=1, FREQ=1, Y, X] NOTE ---- Only open slice image that has only ONE frequency and ONE Stokes parameter. Returns ------- header : `~astropy.io.fits.Header` image : 2D `~numpy.ndarray` The 2D [Y, X] image part of the slice image. """ with fits.open(infile) as f: header = f[0].header data = f[0].data if data.ndim == 2: # NAXIS=2: [Y, X] image = data elif data.ndim == 3 and data.shape[0] == 1: # NAXIS=3: [FREQ=1, Y, X] image = data[0, :, :] elif data.ndim == 4 and data.shape[0] == 1 and data.shape[1] == 1: # NAXIS=4: [STOKES=1, FREQ=1, Y, X] image = data[0, 0, :, :] else: raise ValueError("Slice '{0}' has invalid dimensions: {1}".format( infile, data.shape)) return (header, image) def load_image(self, image): print("Loading image ... ", end="", flush=True) self.header, self.image = self.open_image(image) self.exposure = self.header.get("EXPOSURE") print("DONE", flush=True) def load_expmap(self, expmap): if expmap: print("Loading exposure map ... ", end="", flush=True) __, self.expmap = self.open_image(expmap) print("DONE", flush=True) def load_bkgmap(self, bkgmap): if bkgmap: print("Loading background map ... ", end="", flush=True) header, self.bkgmap = self.open_image(bkgmap) self.exposure_bkg = header.get("EXPOSURE") print("DONE", flush=True) def fix_shapes(self, tolerance=2): """ Fix the shapes of self.expmap and self.bkgmap to make them have the same shape as the self.image. NOTE: * if the image is bigger than the reference image, then its columns on the right and rows on the botton are clipped; * if the image is smaller than the reference image, then padding columns on the right and rows on the botton are added. * Original images are REPLACED! Arguments: * tolerance: allow absolute difference between images """ def _fix_shape(img, ref, tol=tolerance): if img.shape == ref.shape: print("SKIPPED", flush=True) return img elif np.allclose(img.shape, ref.shape, atol=tol): print(img.shape, "->", ref.shape, flush=True) rows, cols = img.shape rows_ref, cols_ref = ref.shape # rows if rows > rows_ref: img_fixed = img[:rows_ref, :] else: img_fixed = np.row_stack((img, np.zeros((rows_ref-rows, cols), dtype=img.dtype))) # columns if cols > cols_ref: img_fixed = img_fixed[:, :cols_ref] else: img_fixed = np.column_stack((img_fixed, np.zeros((rows_ref, cols_ref-cols), dtype=img.dtype))) return img_fixed else: raise ValueError("shape difference exceeds tolerance: " + \ "(%d, %d) vs. (%d, %d)" % (img.shape + ref.shape)) # if self.bkgmap is not None: print("Fixing shape for bkgmap ... ", end="", flush=True) self.bkgmap = _fix_shape(self.bkgmap, self.image) if self.expmap is not None: print("Fixing shape for expmap ... ", end="", flush=True) self.expmap = _fix_shape(self.expmap, self.image) def subtract_bkg(self): print("Subtracting background ... ", end="", flush=True) self.image -= (self.bkgmap / self.exposure_bkg * self.exposure) print("DONE", flush=True) def correct_exposure(self, cut=0.015): """ Correct the image for exposure by dividing by the expmap to create the exposure-corrected image. Arguments: * cut: the threshold percentage with respect to the maximum exposure map value; and those pixels with lower values than this threshold will be excluded/clipped (set to ZERO) if set to None, then skip clipping image """ print("Correcting image for exposure ... ", end="", flush=True) with np.errstate(divide="ignore", invalid="ignore"): self.image /= self.expmap # set invalid values to ZERO self.image[ ~ np.isfinite(self.image) ] = 0.0 print("DONE", flush=True) if cut is not None: # clip image according the exposure threshold print("Clipping image (%s) ... " % cut, end="", flush=True) threshold = cut * np.max(self.expmap) self.image[ self.expmap < threshold ] = 0.0 print("DONE", flush=True) def main(): parser = argparse.ArgumentParser( description="Compute the radially averaged power spectral density", epilog="Version: %s (%s)" % (__version__, __date__)) parser.add_argument("-V", "--version", action="version", version="%(prog)s " + "%s (%s)" % (__version__, __date__)) parser.add_argument("-C", "--clobber", dest="clobber", action="store_true", help="overwrite the output files if already exist") parser.add_argument("-i", "--infile", dest="infile", required=True, help="input image") parser.add_argument("-b", "--bkgmap", dest="bkgmap", default=None, help="background map (for background subtraction)") parser.add_argument("-e", "--expmap", dest="expmap", default=None, help="exposure map (for exposure correction)") parser.add_argument("-o", "--outfile", dest="outfile", required=True, help="output file to store the PSD data") parser.add_argument("-p", "--png", dest="png", default=None, help="plot the PSD and save (default: same basename as outfile)") args = parser.parse_args() if args.png is None: args.png = os.path.splitext(args.outfile)[0] + ".png" # Check output files whether already exists if (not args.clobber) and os.path.exists(args.outfile): raise ValueError("outfile '%s' already exists" % args.outfile) if (not args.clobber) and os.path.exists(args.png): raise ValueError("output png '%s' already exists" % args.png) # Load image data image = AstroImage(image=args.infile, expmap=args.expmap, bkgmap=args.bkgmap) image.fix_shapes() if args.bkgmap: image.subtract_bkg() if args.expmap: image.correct_exposure() # Calculate the power spectral density psd = PSD(img=image.image, normalize=True) psd.calc_psd2d() freqs, psd1d, psd1d_err = psd.calc_radial_psd1d() # Write out PSD results psd_data = np.column_stack((freqs, psd1d, psd1d_err)) np.savetxt(args.outfile, psd_data, header="freqs psd1d psd1d_err") # Make and save a plot fig = Figure(figsize=(10, 8)) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) psd.plot(ax=ax, fig=fig) fig.savefig(args.png, format="png", dpi=150) if __name__ == "__main__": main()