#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # References: # [1] Definition of RMF and ARF file formats # https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html # [2] CIAO: Auxiliary Response File # http://cxc.harvard.edu/ciao/dictionary/arf.html # [3] CIAO: Redistribution Matrix File # http://cxc.harvard.edu/ciao/dictionary/rmf.html # [4] astropy - FITS format code # http://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation # [5] XSPEC - Spectral Fitting # https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html # # # Weitian LI # Created: 2016-03-26 # Updated: 2016-04-06 # # ChangeLog: # 2016-04-06: # * Fix `RMF: get_rmfimg()' for XMM EPIC RMF # 2016-04-02: # * Interpolate ARF in order to match the spectral channel energies # * Add version and date information # * Update documentations # * Update header history contents # 2016-04-01: # * Greatly update the documentations (e.g., description, sample config) # * Add class `RMF' # * Add method `get_energy()' for class `ARF' # * Split out class `SpectrumSet' from `Spectrum' # * Implement background subtraction # * Add config `subtract_bkg' and corresponding argument # # XXX/FIXME: # * SpectrumSet: estimate channel errors by Monte Carlo simulations # # TODO: # * Spectrum: implement the grouping function (and quality columns) # * Split classes ARF, RMF, Spectrum, and SpectrumSet to a separate module # __version__ = "0.3.0" __date__ = "2016-04-02" """ Correct the crosstalk effect of XMM spectra by subtracting the photons that scattered from the surrounding regions due to the finite PSF, and by compensating the photons that scattered to the surrounding regions, according to the generated crosstalk ARFs by SAS `arfgen'. Sample config file (in `ConfigObj' syntax): ----------------------------------------------------------- verbose = True clobber = False # whether to subtract the background before crosstalk correction subtract_bkg = True # whether to fix the negative channel values due to spectral subtractions fix_negative = True [...] ... [reg2] outfile = cc_reg2.pi spec = reg2.pi arf = reg2.arf rmf = reg2.rmf bkg = reg2_bkg.pi [[cross_in]] [[[in1]]] spec = reg1.pi arf = reg1.arf rmf = reg1.rmf bkg = reg1_bkg.pi cross_arf = reg_1-2.arf [[[in2]]] spec = reg3.pi arf = reg3.arf rmf = reg3.rmf bkg = reg3_bkg.pi cross_arf = reg_3-2.arf [[cross_out]] cross_arf = reg_2-1.arf, reg_2-3.arf [...] ... ----------------------------------------------------------- """ import numpy as np import scipy as sp import scipy.interpolate from astropy.io import fits from configobj import ConfigObj import sys import os import argparse from datetime import datetime class ARF: # {{{ """ Class to handle the ARF (ancillary/auxiliary response file), which contains the combined instrumental effective area (telescope/filter/detector) and the quantum efficiency (QE) as a function of energy averaged over time. The effective area is [cm^2], and the QE is [counts/photon]; they are multiplied together to create the ARF, resulting in [cm^2 counts/photon]. **CAVEAT/NOTE**: Generally, the "ENERG_LO" and "ENERG_HI" columns of an ARF are *different* to the "E_MIN" and "E_MAX" columns of a RMF (which are corresponding to the spectrum channel energies). For the XMM EPIC *pn* and Chandra *ACIS*, the generated ARF does NOT have the same number of data points to that of spectral channels, i.e., the "ENERG_LO" and "ENERG_HI" columns of ARF is different to the "E_MIN" and "E_MAX" columns of RMF. Therefore it is necessary to interpolate and extrapolate the ARF curve in order to match the spectrum (or RMF "EBOUNDS" extension). As for the XMM EPIC *MOS1* and *MOS2*, the ARF data points match the spectral channels, i.e., the energy positions of each ARF data point and spectral channel are consistent. Thus the interpolation is not needed. References: [1] CIAO: Auxiliary Response File http://cxc.harvard.edu/ciao/dictionary/arf.html [2] Definition of RMF and ARF file formats https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html """ filename = None fitsobj = None # only consider the "SPECTRUM" extension header = None energ_lo = None energ_hi = None specresp = None # function of the interpolated ARF f_interp = None def __init__(self, filename): self.filename = filename self.fitsobj = fits.open(filename) ext_specresp = self.fitsobj["SPECRESP"] self.header = ext_specresp.header self.energ_lo = ext_specresp.data["ENERG_LO"] self.energ_hi = ext_specresp.data["ENERG_HI"] self.specresp = ext_specresp.data["SPECRESP"] def get_data(self, copy=True): if copy: return self.specresp.copy() else: return self.specresp def get_energy(self, mean="geometric"): """ Return the mean energy values of the ARF. Arguments: * mean: type of the mean energy: + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max) + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max) """ if mean == "geometric": energy = np.sqrt(self.energ_lo * self.energ_hi) elif mean == "arithmetic": energy = 0.5 * (self.energ_lo + self.energ_hi) else: raise ValueError("Invalid mean type: %s" % mean) return energy def interpolate(self, x=None, verbose=False): """ Cubic interpolate the ARF curve using `scipy.interpolate' If the requested point is outside of the data range, the fill value of *zero* is returned. Arguments: * x: points at which the interpolation to be calculated. Return: If x is None, then the interpolated function is returned, otherwise, the interpolated data are returned. """ if not hasattr(self, "f_interp") or self.f_interp is None: energy = self.get_energy() arf = self.get_data(copy=False) if verbose: print("INFO: ARF interpolating (this may take a while) ...", file=sys.stderr) f_interp = sp.interpolate.interp1d(energy, arf, kind="cubic", bounds_error=False, fill_value=0.0, assume_sorted=True) self.f_interp = f_interp if x is not None: return self.f_interp(x) else: return self.f_interp # class ARF }}} class RMF: # {{{ """ Class to handle the RMF (redistribution matrix file), which maps from energy space into detector pulse height (or position) space. Since detectors are not perfect, this involves a spreading of the observed counts by the detector resolution, which is expressed as a matrix multiplication. For X-ray spectral analysis, the RMF encodes the probability R(E,p) that a detected photon of energy E will be assisgned to a given channel value (PHA or PI) of p. The standard Legacy format [2] for the RMF uses a binary table in which each row contains R(E,p) for a single value of E as a function of p. Non-zero sequences of elements of R(E,p) are encoded using a set of variable length array columns. This format is compact but hard to manipulate and understand. **CAVEAT/NOTE**: + See also the above ARF CAVEAT/NOTE. + The "EBOUNDS" extension contains the `CHANNEL', `E_MIN' and `E_MAX' columns. This `CHANNEL' is the same as that of a spectrum. Therefore, the energy values determined from the `E_MIN' and `E_MAX' columns are used to interpolate and extrapolate the ARF curve. + The `ENERG_LO' and `ENERG_HI' columns of the "MATRIX" extension are the same as that of a ARF. References: [1] CIAO: Redistribution Matrix File http://cxc.harvard.edu/ciao/dictionary/rmf.html [2] Definition of RMF and ARF file formats https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html """ filename = None fitsobj = None ## extension "MATRIX" hdr_matrix = None energ_lo = None energ_hi = None n_grp = None f_chan = None n_chan = None # raw squeezed RMF matrix data matrix = None ## extension "EBOUNDS" hdr_ebounds = None channel = None e_min = None e_max = None ## converted 2D RMF matrix/image from the squeezed binary table # size: len(energ_lo) x len(channel) rmfimg = None def __init__(self, filename): self.filename = filename self.fitsobj = fits.open(filename) ## "MATRIX" extension ext_matrix = self.fitsobj["MATRIX"] self.hdr_matrix = ext_matrix.header self.energ_lo = ext_matrix.data["ENERG_LO"] self.energ_hi = ext_matrix.data["ENERG_HI"] self.n_grp = ext_matrix.data["N_GRP"] self.f_chan = ext_matrix.data["F_CHAN"] self.n_chan = ext_matrix.data["N_CHAN"] self.matrix = ext_matrix.data["MATRIX"] ## "EBOUNDS" extension ext_ebounds = self.fitsobj["EBOUNDS"] self.hdr_ebounds = ext_ebounds.header self.channel = ext_ebounds.data["CHANNEL"] self.e_min = ext_ebounds.data["E_MIN"] self.e_max = ext_ebounds.data["E_MAX"] def get_energy(self, mean="geometric"): """ Return the mean energy values of the RMF "EBOUNDS". Arguments: * mean: type of the mean energy: + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max) + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max) """ if mean == "geometric": energy = np.sqrt(self.e_min * self.e_max) elif mean == "arithmetic": energy = 0.5 * (self.e_min + self.e_max) else: raise ValueError("Invalid mean type: %s" % mean) return energy def get_rmfimg(self): """ Convert the RMF data in squeezed binary table (standard Legacy format) to a 2D image/matrix. """ def _make_rmfimg_row(n_channel, dtype, f_chan, n_chan, mat_row): # make sure that `f_chan' and `n_chan' are 1-D numpy array f_chan = np.array(f_chan).reshape(-1) f_chan -= 1 # FITS indices are 1-based n_chan = np.array(n_chan).reshape(-1) idx = np.concatenate([ np.arange(f, f+n) \ for f, n in zip(f_chan, n_chan) ]) rmfrow = np.zeros(n_channel, dtype=dtype) rmfrow[idx] = mat_row return rmfrow # if self.rmfimg is None: # Make the 2D RMF matrix/image n_energy = len(self.energ_lo) n_channel = len(self.channel) rmf_dtype = self.matrix[0].dtype rmfimg = np.zeros(shape=(n_energy, n_channel), dtype=rmf_dtype) for i in np.arange(n_energy)[self.n_grp > 0]: rmfimg[i, :] = _make_rmfimg_row(n_channel, rmf_dtype, self.f_chan[i], self.n_chan[i], self.matrix[i]) self.rmfimg = rmfimg return self.rmfimg def write_rmfimg(self, outfile, clobber=False): rmfimg = self.get_rmfimg() # merge headers header = self.hdr_matrix.copy(strip=True) header.extend(self.hdr_ebounds.copy(strip=True)) outfits = fits.PrimaryHDU(data=rmfimg, header=header) outfits.writeto(outfile, checksum=True, clobber=clobber) # class RMF }}} class Spectrum: # {{{ """ Class that deals with the X-ray spectrum file (usually *.pi). """ filename = None # FITS object return by `fits.open()' fitsobj = None # header of "SPECTRUM" extension header = None # "SPECTRUM" extension data channel = None # name of the spectrum data column (i.e., type, "COUNTS" or "RATE") spec_type = None # unit of the spectrum data ("count" for "COUNTS", "count/s" for "RATE") spec_unit = None # spectrum data spec_data = None # several important keywords EXPOSURE = None BACKSCAL = None RESPFILE = None ANCRFILE = None BACKFILE = None # numpy dtype and FITS format code of the spectrum data spec_dtype = None spec_fits_format = None def __init__(self, filename): self.filename = filename self.fitsobj = fits.open(filename) ext_spec = self.fitsobj["SPECTRUM"] self.header = ext_spec.header.copy(strip=True) colnames = ext_spec.columns.names if "COUNTS" in colnames: self.spec_type = "COUNTS" elif "RATE" in colnames: self.spec_type = "RATE" else: raise ValueError("Invalid spectrum file") self.channel = ext_spec.data.columns["CHANNEL"].array col_spec_data = ext_spec.data.columns[self.spec_type] self.spec_data = col_spec_data.array.copy() self.spec_unit = col_spec_data.unit self.spec_dtype = col_spec_data.dtype self.spec_fits_format = col_spec_data.format # keywords self.EXPOSURE = self.header.get("EXPOSURE") self.BACKSCAL = self.header.get("BACKSCAL") self.AREASCAL = self.header.get("AREASCAL") self.RESPFILE = self.header.get("RESPFILE") self.ANCRFILE = self.header.get("ANCRFILE") self.BACKFILE = self.header.get("BACKFILE") def get_data(self, copy=True): if copy: return self.spec_data.copy() else: return self.spec_data def get_channel(self, copy=True): if copy: return self.channel.copy() else: return self.channel def reset_header_keywords(self, keywords=["ANCRFILE", "RESPFILE", "BACKFILE"]): """ Reset the keywords to "NONE" to avoid confusion or mistakes. """ for kw in keywords: if kw in self.header: header[kw] = "NONE" def write(self, filename, clobber=False): """ Create a new "SPECTRUM" table/extension and replace the original one, then write to output file. """ ext_spec_cols = fits.ColDefs([ fits.Column(name="CHANNEL", format="I", array=self.channel), fits.Column(name=self.spec_type, format=self.spec_fits_format, unit=self.spec_unit, array=self.spec_data)]) ext_spec = fits.BinTableHDU.from_columns(ext_spec_cols, header=self.header) self.fitsobj["SPECTRUM"] = ext_spec self.fitsobj.writeto(filename, clobber=clobber, checksum=True) # class Spectrum }}} class SpectrumSet(Spectrum): # {{{ """ This class handles a set of spectrum, including the source spectrum, RMF, ARF, and the background spectrum. **NOTE**: The "COUNTS" column data are converted from "int32" to "float32", since this spectrum will be subtracted/compensated according to the ratios of ARFs. """ # ARF object for this spectrum arf = None # RMF object for this spectrum rmf = None # background Spectrum object for this spectrum bkg = None # numpy dtype and FITS format code to which the spectrum data be # converted if the data is "COUNTS" _spec_dtype = np.float32 _spec_fits_format = "E" def __init__(self, filename, arffile=None, rmffile=None, bkgfile=None): super(self.__class__, self).__init__(filename) # convert spectrum data type if necessary if self.spec_data.dtype != self._spec_dtype: self.spec_data = self.spec_data.astype(self._spec_dtype) self.spec_dtype = self._spec_dtype self.spec_fits_format = self._spec_fits_format if arffile is not None: self.arf = ARF(arffile) if rmffile is not None: self.rmf = RMF(rmffile) if bkgfile is not None: self.bkg = Spectrum(bkgfile) def get_energy(self, mean="geometric"): """ Get the energy values of each channel if RMF present. NOTE: The "E_MIN" and "E_MAX" columns of the RMF is required to calculate the spectrum channel energies. And the channel energies are generally different to the "ENERG_LO" and "ENERG_HI" of the corresponding ARF. """ if self.rmf is None: return None else: return self.rmf.get_energy(mean=mean) def get_arf(self, mean="geometric", copy=True): """ Get the corresponding ARF curve data if the ARF presents. Return: [ energy, resp ] where the "energy" and "resp" are the ARF energy values and spectral response array, respectively. """ if self.arf is None: return None else: energy = self.arf.get_energy(mean=mean) resp = self.arf.get_data(copy=copy) return [ energy, resp ] def subtract_bkg(self, inplace=True, verbose=False): """ Subtract the background contribution from the source spectrum. The `EXPOSURE' and `BACKSCAL' values are required to calculate the fraction/ratio for the background subtraction. Arguments: * inplace: whether replace the `spec_data' with the background- subtracted spectrum data; If True, the attribute `spec_bkg_subtracted' is also set to `True' when the subtraction finished. Return: background-subtracted spectrum data """ ratio = (self.EXPOSURE / self.bkg.EXPOSURE) * \ (self.BACKSCAL / self.bkg.BACKSCAL) * \ (self.AREASCAL / self.bkg.AREASCAL) operation = " SUBTRACT_BACKGROUND: %s - %s * %s" % \ (self.filename, ratio, self.bkg.filename) if verbose: print(operation, file=sys.stderr) spec_data_subbkg = self.spec_data - ratio * self.bkg.get_data() if inplace: self.spec_data = spec_data_subbkg self.spec_bkg_subtracted = True # also record history self.header.add_history(operation) return spec_data_subbkg def subtract(self, spectrumset, cross_arf, verbose=False): """ Subtract the photons that originate from the surrounding regions but were scattered into this spectrum due to the finite PSF. The background of this spectrum and the given spectrum should both be subtracted before applying this subtraction for crosstalk correction, as well as the below `compensate()' procedure. NOTE: 1. The crosstalk ARF must be provided, since the `spectrumset.arf' is required to be its ARF without taking crosstalk into account: spec1_new = spec1 - spec2 * (cross_arf_2_to_1 / arf2) 2. The ARF are interpolated to match the energies of spetral channels. """ operation = " SUBTRACT: %s - (%s/%s) * %s" % (self.filename, cross_arf.filename, spectrumset.arf.filename, spectrumset.filename) if verbose: print(operation, file=sys.stderr) energy = self.get_energy() arfresp_spec = spectrumset.arf.interpolate(x=energy, verbose=verbose) arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose) arf_ratio = arfresp_cross / arfresp_spec # fix nan values due to division by zero arf_ratio[np.isnan(arf_ratio)] = 0.0 self.spec_data -= spectrumset.get_data() * arf_ratio # record history self.header.add_history(operation) def compensate(self, cross_arf, verbose=False): """ Compensate the photons that originate from this regions but were scattered into the surrounding regions due to the finite PSF. formula: spec1_new = spec1 + spec1 * (cross_arf_1_to_2 / arf1) """ operation = " COMPENSATE: %s + (%s/%s) * %s" % (self.filename, cross_arf.filename, self.arf.filename, self.filename) if verbose: print(operation, file=sys.stderr) energy = self.get_energy() arfresp_this = self.arf.interpolate(x=energy, verbose=verbose) arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose) arf_ratio = arfresp_cross / arfresp_this # fix nan values due to division by zero arf_ratio[np.isnan(arf_ratio)] = 0.0 self.spec_data += self.get_data() * arf_ratio # record history self.header.add_history(operation) def fix_negative(self, verbose=False): """ The subtractions may lead to negative counts, it may be necessary to fix these channels with negative values. """ neg_counts = self.spec_data < 0 N = len(neg_counts) neg_channels = np.arange(N, dtype=np.int)[neg_counts] if len(neg_channels) > 0: print("WARNING: %d channels have NEGATIVE counts" % \ len(neg_channels), file=sys.stderr) i = 0 while len(neg_channels) > 0: i += 1 if verbose: if i == 1: print("*** Fixing negative channels: iter %d..." % i, end="", file=sys.stderr) else: print("%d..." % i, end="", file=sys.stderr) for ch in neg_channels: neg_val = self.spec_data[ch] if ch < N-2: self.spec_data[ch] = 0 self.spec_data[(ch+1):(ch+3)] -= 0.5 * np.abs(neg_val) else: # just set to zero if it is the last 2 channels self.spec_data[ch] = 0 # update negative channels indices neg_counts = self.spec_data < 0 neg_channels = np.arange(N, dtype=np.int)[neg_counts] if i > 0: print("FIXED ***", file=sys.stderr) # record history self.header.add_history(" FIXED NEGATIVE CHANNELS") # class SpectrumSet }}} class Crosstalk: # {{{ """ Crosstalk correction. """ # `SpectrumSet' object for the spectrum to be corrected spectrumset = None # NOTE/XXX: do NOT use list (e.g., []) here, otherwise, all the # instances will share these list properties. # `SpectrumSet' and `ARF' objects corresponding to the spectra from # which the photons were scattered into this spectrum. cross_in_specset = None cross_in_arf = None # `ARF' objects corresponding to the regions to which the photons of # this spectrum were scattered into. cross_out_arf = None # output filename to which write the corrected spectrum outfile = None def __init__(self, config): """ Arguments: * config: a section of the whole config file (`ConfigObj' object) """ self.cross_in_specset = [] self.cross_in_arf = [] self.cross_out_arf = [] # this spectrum to be corrected self.spectrumset = SpectrumSet(filename=config["spec"], arffile=config["arf"], rmffile=config.get("rmf"), bkgfile=config.get("bkg")) # spectra and cross arf from which photons were scattered in for reg_in in config["cross_in"].values(): specset = SpectrumSet(filename=reg_in["spec"], arffile=reg_in["arf"], rmffile=reg_in.get("rmf"), bkgfile=reg_in.get("bkg")) self.cross_in_specset.append(specset) self.cross_in_arf.append(ARF(reg_in["cross_arf"])) # regions into which the photons of this spectrum were scattered into if "cross_out" in config.sections: cross_arf = config["cross_out"].as_list("cross_arf") for arffile in cross_arf: self.cross_out_arf.append(ARF(arffile)) # output filename self.outfile = config["outfile"] def do_correction(self, subtract_bkg=True, fix_negative=False, verbose=False): """ Perform the crosstalk correction. The background contribution for each spectrum is subtracted first if `subtract_bkg' is True. The basic correction procedures are recorded to the header. """ self.spectrumset.header.add_history("Crosstalk Correction BEGIN") self.spectrumset.header.add_history(" TOOL: %s (v%s) @ %s" % (\ os.path.basename(sys.argv[0]), __version__, datetime.utcnow().isoformat())) # background subtraction if subtract_bkg: if verbose: print("INFO: subtract background ...", file=sys.stderr) self.spectrumset.subtract_bkg(inplace=True, verbose=verbose) # also apply background subtraction to the surrounding spectra for specset in self.cross_in_specset: specset.subtract_bkg(inplace=True, verbose=verbose) # subtractions if verbose: print("INFO: apply subtractions ...", file=sys.stderr) for specset, cross_arf in zip(self.cross_in_specset, self.cross_in_arf): self.spectrumset.subtract(spectrumset=specset, cross_arf=cross_arf, verbose=verbose) # compensations if verbose: print("INFO: apply compensations ...", file=sys.stderr) for cross_arf in self.cross_out_arf: self.spectrumset.compensate(cross_arf=cross_arf, verbose=verbose) # fix negative values in channels if fix_negative: if verbose: print("INFO: fix negative channel values ...", file=sys.stderr) self.spectrumset.fix_negative(verbose=verbose) self.spectrumset.header.add_history("END Crosstalk Correction") def write(self, filename=None, clobber=False): if filename is None: filename = self.outfile self.spectrumset.reset_header_keywords( keywords=["ANCRFILE", "BACKFILE"]) self.spectrumset.write(filename, clobber=clobber) # class Crosstalk }}} def set_argument(name, default, cmdargs, config): value = default if name in config.keys(): value = config.as_bool(name) value_cmd = vars(cmdargs)[name] if value_cmd != default: value = value_cmd # command arguments overwrite others return value def main(): parser = argparse.ArgumentParser( description="Correct the crosstalk effects for XMM EPIC spectra", epilog="Version: %s (%s)" % (__version__, __date__)) parser.add_argument("config", help="config file in which describes " +\ "the crosstalk relations ('ConfigObj' syntax)") parser.add_argument("-B", "--no-subtract-bkg", dest="subtract_bkg", action="store_false", help="do NOT subtract background first") parser.add_argument("-N", "--fix-negative", dest="fix_negative", action="store_true", help="fix negative channel values") parser.add_argument("-C", "--clobber", dest="clobber", action="store_true", help="overwrite output file if exists") parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="show verbose information") args = parser.parse_args() config = ConfigObj(args.config) subtract_bkg = set_argument("subtract_bkg", True, args, config) fix_negative = set_argument("fix_negative", False, args, config) verbose = set_argument("verbose", False, args, config) clobber = set_argument("clobber", False, args, config) for region in config.sections: if verbose: print("INFO: processing '%s' ..." % region, file=sys.stderr) crosstalk = Crosstalk(config.get(region)) crosstalk.do_correction(subtract_bkg=subtract_bkg, fix_negative=fix_negative, verbose=verbose) crosstalk.write(clobber=clobber) if __name__ == "__main__": main() # vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: #