diff options
-rwxr-xr-x | fit_sbp.py | 114 |
1 files changed, 70 insertions, 44 deletions
@@ -7,6 +7,9 @@ # # Changelogs: # 2016-05-06: +# * Also plot r500 positions of interest with vertical lines +# * Adjust plot appearance (e.g., text positions, secondary r500 axis) +# * Simplify `super()` usage # * PEP8 fixes # 2016-04-26: # * Reorder some methods of classes 'FitModelSBeta' and 'FitModelDBeta' @@ -118,7 +121,7 @@ from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from configobj import ConfigObj -__version__ = "0.6.3" +__version__ = "0.6.4" __date__ = "2016-05-06" plt.style.use("ggplot") @@ -165,7 +168,7 @@ class FitModel: def f_fitted(x): return self.func(x, params) ydata = f_fitted(xdata) - ax.plot(xdata, ydata, 'k-') + ax.plot(xdata, ydata, color="black", linestyle="solid") class FitModelSBeta(FitModel): @@ -181,9 +184,8 @@ class FitModelSBeta(FitModel): ("bkg", 1.0e-9, True, 0.0, 1.0e-7, None)) def __init__(self): - super(self.__class__, self).__init__(name="Single-beta", - func=self.sbeta, - params=self.params) + super().__init__(name="Single-beta", func=self.sbeta, + params=self.params) @staticmethod def sbeta(r, params): @@ -198,19 +200,22 @@ class FitModelSBeta(FitModel): """ Plot the fitted model, as well as the fitted parameters. """ - super(self.__class__, self).plot(params, xdata, ax) - ydata = self.sbeta(xdata, params) + super().plot(params, xdata, ax) + xmin, xmax = ax.get_xlim() + ymin, ymax = ax.get_ylim() + ybkg = max(ymin, params["bkg"].value) # fitted paramters - ax.vlines(x=params["rc"].value, ymin=min(ydata), ymax=max(ydata), - linestyles="dashed") - ax.hlines(y=params["bkg"].value, xmin=min(xdata), xmax=max(xdata), - linestyles="dashed") - ax.text(x=params["rc"].value, y=min(ydata), + ax.vlines(x=params["rc"].value, ymin=ymin, ymax=ymax, + color="gray", linestyles="dashed") + ax.hlines(y=params["bkg"].value, xmin=xmin, xmax=xmax, + color="gray", linestyles="dashed") + ax.text(x=params["rc"].value/1.1, y=ymin*1.5, s="beta: %.2f\nrc: %.2f" % (params["beta"].value, - params["rc"].value)) - ax.text(x=min(xdata), y=min(ydata), + params["rc"].value), + horizontalalignment="right", verticalalignment="bottom") + ax.text(x=xmin*1.1, y=ybkg*1.1, s="bkg: %.3e" % params["bkg"].value, - verticalalignment="top") + verticalalignment="bottom") class FitModelDBeta(FitModel): @@ -237,9 +242,8 @@ class FitModelDBeta(FitModel): params.add("bkg", value=1.0e-9, min=0.0, max=1.0e-7) def __init__(self): - super(self.__class__, self).__init__(name="Double-beta", - func=self.dbeta, - params=self.params) + super().__init__(name="Double-beta", func=self.dbeta, + params=self.params) @classmethod def dbeta(self, r, params): @@ -273,7 +277,7 @@ class FitModelDBeta(FitModel): Plot the fitted model, and each beta component, as well as the fitted parameters. """ - super(self.__class__, self).plot(params, xdata, ax) + super().plot(params, xdata, ax) beta1_ydata = self.beta1(xdata, params) beta2_ydata = self.beta2(xdata, params) ax.plot(xdata, beta1_ydata, 'b-.') @@ -320,15 +324,14 @@ class FitModelSBetaNorm(FitModel): return s0 * np.power((1 + (r/rc)**2), (0.5 - 3*beta)) + bkg def __init__(self): - super(self.__class__, self).__init__(name="Single-beta", - func=self.sbeta, - params=self.params) + super().__init__(name="Single-beta", func=self.sbeta, + params=self.params) def plot(self, params, xdata, ax): """ Plot the fitted model, as well as the fitted parameters. """ - super(self.__class__, self).plot(params, xdata, ax) + super().plot(params, xdata, ax) ydata = self.sbeta(xdata, params) # fitted paramters ax.vlines(x=params["rc"].value, ymin=min(ydata), ymax=max(ydata), @@ -395,16 +398,15 @@ class FitModelDBetaNorm(FitModel): return self.beta1(r, params) + self.beta2(r, params) def __init__(self): - super(self.__class__, self).__init__(name="Double-beta", - func=self.dbeta, - params=self.params) + super().__init__(name="Double-beta", func=self.dbeta, + params=self.params) def plot(self, params, xdata, ax): """ Plot the fitted model, and each beta component, as well as the fitted parameters. """ - super(self.__class__, self).plot(params, xdata, ax) + super().plot(params, xdata, ax) beta1_ydata = self.beta1(xdata, params) beta2_ydata = self.beta2(xdata, params) ax.plot(xdata, beta1_ydata, 'b-.') @@ -646,36 +648,50 @@ class SbpFit: # noticed data points eb = ax.errorbar(self.xdata[self.mask], self.ydata[self.mask], xerr=self.xerr[self.mask], - yerr=self.yerr[self.mask], fmt="none") + yerr=self.yerr[self.mask], + fmt="none", elinewidth=2, capthick=2) # ignored data points ignore_mask = np.logical_not(self.mask) if np.sum(ignore_mask) > 0: eb = ax.errorbar(self.xdata[ignore_mask], self.ydata[ignore_mask], xerr=self.xerr[ignore_mask], - yerr=self.yerr[ignore_mask], fmt="none") - eb[-1][0].set_linestyle("-.") + yerr=self.yerr[ignore_mask], + fmt="none", elinewidth=2, capthick=2) + eb[-1][0].set_linestyle("dashdot") + eb[-1][1].set_linestyle("dashdot") # fitted model + xmin = 1.0 xmax = self.xdata[-1] + self.xerr[-1] - xpred = np.power(10, np.linspace(0, np.log10(xmax), 2*len(self.xdata))) + xpred = np.power(10, np.linspace(0, np.log10(xmax), 3*len(self.xdata))) ypred = self.fitted_model(xpred) - ymin = min(min(self.ydata), min(ypred)) - ymax = max(max(self.ydata), max(ypred)) - self.model.plot(params=self.fitted.params, xdata=xpred, ax=ax) + ymin = min(min(self.ydata), min(ypred)) / 1.2 + ymax = max(max(self.ydata), max(ypred)) * 1.2 ax.set_xscale("log") ax.set_yscale("log") - ax.set_xlim(1.0, xmax) - ax.set_ylim(ymin/1.2, ymax*1.2) + ax.set_xlim(xmin, xmax) + ax.set_ylim(ymin, ymax) + self.model.plot(params=self.fitted.params, xdata=xpred, ax=ax) name = self.name if self.obsid is not None: name += "; %s" % self.obsid ax.set_title("Fitted Surface Brightness Profile (%s)" % name) ax.set_xlabel("Radius (%s)" % self.xunit) ax.set_ylabel(r"Surface Brightness (photons/cm$^2$/pixel$^2$/s)") - ax.text(x=xmax, y=ymax, - s="redchi: %.2f / %.2f = %.2f" % ( + ax.text(x=xmax/1.2, y=ymax/1.2, + s=r"reduced $\chi^2$: %.2f / %.2f = %.2f" % ( self.fitted.chisqr, self.fitted.nfree, self.fitted.chisqr/self.fitted.nfree), horizontalalignment="right", verticalalignment="top") + try: + # also mark r500 positions of interest with vertical lines + r500_vlines = [0.05, 0.10, 0.2] + vlines_x = [self.convert_unit(x, unit="r500") + for x in r500_vlines] + ax.vlines(x=vlines_x, ymin=ymin, ymax=ymax, + color="blue", linestyles="dotted") + except ValueError: + # cannot convert values from unit "r500" + pass plot_ret = [fig, ax] if r500_axis: # Add a second X-axis with labels in unit "r500" @@ -685,13 +701,23 @@ class SbpFit: ax2 = ax.twiny() # NOTE: the ORDER of the following lines MATTERS ax2.set_xscale(ax.get_xscale()) - ax2_ticks = ax.get_xticks() + # convert main `ax` ticks to be in unit `r500` {{{ + # ax2_ticks = ax.get_xticks() + # ax2.set_xticks(ax2_ticks) + # ax2.set_xticklabels(["%.2g" % self.convert_to_r500(x) + # for x in ax2_ticks]) + # ax2.set_xlim(ax.get_xlim()) + # }}} + # set new `ax2` to have specified ticks {{{ + r500_ticks = [0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 1.0] + ax2_ticks = np.array([self.convert_unit(x, unit="r500") + for x in r500_ticks]) ax2.set_xticks(ax2_ticks) - ax2.set_xbound(ax.get_xbound()) - ax2.set_xticklabels(["%.2g" % self.convert_to_r500(x) - for x in ax2_ticks]) + ax2.set_xticklabels(["%.2f" % x for x in r500_ticks]) + ax2.set_xlim(ax.get_xlim()) + # }}} ax2.set_xlabel("Radius (r500; r500 = %s pix = %s kpc)" % ( - self.r500_pix, self.r500_kpc)) + self.r500_pix, self.r500_kpc)) ax2.grid(False) plot_ret.append(ax2) except ValueError: @@ -806,7 +832,7 @@ def main(): # make and save a plot fig = Figure(figsize=(10, 8)) FigureCanvas(fig) - ax = fig.add_subplot(111) + ax = fig.add_subplot(1, 1, 1) sbpfit.plot(ax=ax, fig=fig, r500_axis=True) fig.savefig(imgfile, dpi=150) |