summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xfit_sbp.py114
1 files changed, 70 insertions, 44 deletions
diff --git a/fit_sbp.py b/fit_sbp.py
index f29277e..5cba2ba 100755
--- a/fit_sbp.py
+++ b/fit_sbp.py
@@ -7,6 +7,9 @@
#
# Changelogs:
# 2016-05-06:
+# * Also plot r500 positions of interest with vertical lines
+# * Adjust plot appearance (e.g., text positions, secondary r500 axis)
+# * Simplify `super()` usage
# * PEP8 fixes
# 2016-04-26:
# * Reorder some methods of classes 'FitModelSBeta' and 'FitModelDBeta'
@@ -118,7 +121,7 @@ from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from configobj import ConfigObj
-__version__ = "0.6.3"
+__version__ = "0.6.4"
__date__ = "2016-05-06"
plt.style.use("ggplot")
@@ -165,7 +168,7 @@ class FitModel:
def f_fitted(x):
return self.func(x, params)
ydata = f_fitted(xdata)
- ax.plot(xdata, ydata, 'k-')
+ ax.plot(xdata, ydata, color="black", linestyle="solid")
class FitModelSBeta(FitModel):
@@ -181,9 +184,8 @@ class FitModelSBeta(FitModel):
("bkg", 1.0e-9, True, 0.0, 1.0e-7, None))
def __init__(self):
- super(self.__class__, self).__init__(name="Single-beta",
- func=self.sbeta,
- params=self.params)
+ super().__init__(name="Single-beta", func=self.sbeta,
+ params=self.params)
@staticmethod
def sbeta(r, params):
@@ -198,19 +200,22 @@ class FitModelSBeta(FitModel):
"""
Plot the fitted model, as well as the fitted parameters.
"""
- super(self.__class__, self).plot(params, xdata, ax)
- ydata = self.sbeta(xdata, params)
+ super().plot(params, xdata, ax)
+ xmin, xmax = ax.get_xlim()
+ ymin, ymax = ax.get_ylim()
+ ybkg = max(ymin, params["bkg"].value)
# fitted paramters
- ax.vlines(x=params["rc"].value, ymin=min(ydata), ymax=max(ydata),
- linestyles="dashed")
- ax.hlines(y=params["bkg"].value, xmin=min(xdata), xmax=max(xdata),
- linestyles="dashed")
- ax.text(x=params["rc"].value, y=min(ydata),
+ ax.vlines(x=params["rc"].value, ymin=ymin, ymax=ymax,
+ color="gray", linestyles="dashed")
+ ax.hlines(y=params["bkg"].value, xmin=xmin, xmax=xmax,
+ color="gray", linestyles="dashed")
+ ax.text(x=params["rc"].value/1.1, y=ymin*1.5,
s="beta: %.2f\nrc: %.2f" % (params["beta"].value,
- params["rc"].value))
- ax.text(x=min(xdata), y=min(ydata),
+ params["rc"].value),
+ horizontalalignment="right", verticalalignment="bottom")
+ ax.text(x=xmin*1.1, y=ybkg*1.1,
s="bkg: %.3e" % params["bkg"].value,
- verticalalignment="top")
+ verticalalignment="bottom")
class FitModelDBeta(FitModel):
@@ -237,9 +242,8 @@ class FitModelDBeta(FitModel):
params.add("bkg", value=1.0e-9, min=0.0, max=1.0e-7)
def __init__(self):
- super(self.__class__, self).__init__(name="Double-beta",
- func=self.dbeta,
- params=self.params)
+ super().__init__(name="Double-beta", func=self.dbeta,
+ params=self.params)
@classmethod
def dbeta(self, r, params):
@@ -273,7 +277,7 @@ class FitModelDBeta(FitModel):
Plot the fitted model, and each beta component,
as well as the fitted parameters.
"""
- super(self.__class__, self).plot(params, xdata, ax)
+ super().plot(params, xdata, ax)
beta1_ydata = self.beta1(xdata, params)
beta2_ydata = self.beta2(xdata, params)
ax.plot(xdata, beta1_ydata, 'b-.')
@@ -320,15 +324,14 @@ class FitModelSBetaNorm(FitModel):
return s0 * np.power((1 + (r/rc)**2), (0.5 - 3*beta)) + bkg
def __init__(self):
- super(self.__class__, self).__init__(name="Single-beta",
- func=self.sbeta,
- params=self.params)
+ super().__init__(name="Single-beta", func=self.sbeta,
+ params=self.params)
def plot(self, params, xdata, ax):
"""
Plot the fitted model, as well as the fitted parameters.
"""
- super(self.__class__, self).plot(params, xdata, ax)
+ super().plot(params, xdata, ax)
ydata = self.sbeta(xdata, params)
# fitted paramters
ax.vlines(x=params["rc"].value, ymin=min(ydata), ymax=max(ydata),
@@ -395,16 +398,15 @@ class FitModelDBetaNorm(FitModel):
return self.beta1(r, params) + self.beta2(r, params)
def __init__(self):
- super(self.__class__, self).__init__(name="Double-beta",
- func=self.dbeta,
- params=self.params)
+ super().__init__(name="Double-beta", func=self.dbeta,
+ params=self.params)
def plot(self, params, xdata, ax):
"""
Plot the fitted model, and each beta component,
as well as the fitted parameters.
"""
- super(self.__class__, self).plot(params, xdata, ax)
+ super().plot(params, xdata, ax)
beta1_ydata = self.beta1(xdata, params)
beta2_ydata = self.beta2(xdata, params)
ax.plot(xdata, beta1_ydata, 'b-.')
@@ -646,36 +648,50 @@ class SbpFit:
# noticed data points
eb = ax.errorbar(self.xdata[self.mask], self.ydata[self.mask],
xerr=self.xerr[self.mask],
- yerr=self.yerr[self.mask], fmt="none")
+ yerr=self.yerr[self.mask],
+ fmt="none", elinewidth=2, capthick=2)
# ignored data points
ignore_mask = np.logical_not(self.mask)
if np.sum(ignore_mask) > 0:
eb = ax.errorbar(self.xdata[ignore_mask], self.ydata[ignore_mask],
xerr=self.xerr[ignore_mask],
- yerr=self.yerr[ignore_mask], fmt="none")
- eb[-1][0].set_linestyle("-.")
+ yerr=self.yerr[ignore_mask],
+ fmt="none", elinewidth=2, capthick=2)
+ eb[-1][0].set_linestyle("dashdot")
+ eb[-1][1].set_linestyle("dashdot")
# fitted model
+ xmin = 1.0
xmax = self.xdata[-1] + self.xerr[-1]
- xpred = np.power(10, np.linspace(0, np.log10(xmax), 2*len(self.xdata)))
+ xpred = np.power(10, np.linspace(0, np.log10(xmax), 3*len(self.xdata)))
ypred = self.fitted_model(xpred)
- ymin = min(min(self.ydata), min(ypred))
- ymax = max(max(self.ydata), max(ypred))
- self.model.plot(params=self.fitted.params, xdata=xpred, ax=ax)
+ ymin = min(min(self.ydata), min(ypred)) / 1.2
+ ymax = max(max(self.ydata), max(ypred)) * 1.2
ax.set_xscale("log")
ax.set_yscale("log")
- ax.set_xlim(1.0, xmax)
- ax.set_ylim(ymin/1.2, ymax*1.2)
+ ax.set_xlim(xmin, xmax)
+ ax.set_ylim(ymin, ymax)
+ self.model.plot(params=self.fitted.params, xdata=xpred, ax=ax)
name = self.name
if self.obsid is not None:
name += "; %s" % self.obsid
ax.set_title("Fitted Surface Brightness Profile (%s)" % name)
ax.set_xlabel("Radius (%s)" % self.xunit)
ax.set_ylabel(r"Surface Brightness (photons/cm$^2$/pixel$^2$/s)")
- ax.text(x=xmax, y=ymax,
- s="redchi: %.2f / %.2f = %.2f" % (
+ ax.text(x=xmax/1.2, y=ymax/1.2,
+ s=r"reduced $\chi^2$: %.2f / %.2f = %.2f" % (
self.fitted.chisqr, self.fitted.nfree,
self.fitted.chisqr/self.fitted.nfree),
horizontalalignment="right", verticalalignment="top")
+ try:
+ # also mark r500 positions of interest with vertical lines
+ r500_vlines = [0.05, 0.10, 0.2]
+ vlines_x = [self.convert_unit(x, unit="r500")
+ for x in r500_vlines]
+ ax.vlines(x=vlines_x, ymin=ymin, ymax=ymax,
+ color="blue", linestyles="dotted")
+ except ValueError:
+ # cannot convert values from unit "r500"
+ pass
plot_ret = [fig, ax]
if r500_axis:
# Add a second X-axis with labels in unit "r500"
@@ -685,13 +701,23 @@ class SbpFit:
ax2 = ax.twiny()
# NOTE: the ORDER of the following lines MATTERS
ax2.set_xscale(ax.get_xscale())
- ax2_ticks = ax.get_xticks()
+ # convert main `ax` ticks to be in unit `r500` {{{
+ # ax2_ticks = ax.get_xticks()
+ # ax2.set_xticks(ax2_ticks)
+ # ax2.set_xticklabels(["%.2g" % self.convert_to_r500(x)
+ # for x in ax2_ticks])
+ # ax2.set_xlim(ax.get_xlim())
+ # }}}
+ # set new `ax2` to have specified ticks {{{
+ r500_ticks = [0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 1.0]
+ ax2_ticks = np.array([self.convert_unit(x, unit="r500")
+ for x in r500_ticks])
ax2.set_xticks(ax2_ticks)
- ax2.set_xbound(ax.get_xbound())
- ax2.set_xticklabels(["%.2g" % self.convert_to_r500(x)
- for x in ax2_ticks])
+ ax2.set_xticklabels(["%.2f" % x for x in r500_ticks])
+ ax2.set_xlim(ax.get_xlim())
+ # }}}
ax2.set_xlabel("Radius (r500; r500 = %s pix = %s kpc)" % (
- self.r500_pix, self.r500_kpc))
+ self.r500_pix, self.r500_kpc))
ax2.grid(False)
plot_ret.append(ax2)
except ValueError:
@@ -806,7 +832,7 @@ def main():
# make and save a plot
fig = Figure(figsize=(10, 8))
FigureCanvas(fig)
- ax = fig.add_subplot(111)
+ ax = fig.add_subplot(1, 1, 1)
sbpfit.plot(ax=ax, fig=fig, r500_axis=True)
fig.savefig(imgfile, dpi=150)