summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xdeproject_sbp.py169
1 files changed, 169 insertions, 0 deletions
diff --git a/deproject_sbp.py b/deproject_sbp.py
new file mode 100755
index 0000000..8881b2f
--- /dev/null
+++ b/deproject_sbp.py
@@ -0,0 +1,169 @@
+#!/usr/bin/env python3
+#
+# Deproject the 2D surface brightness profile (SBP) into the 3D emission
+# measure (EM) profile, using the non-parametric approach.
+# And the 3D gas density profile can be further derived through the 3D
+# EM profile by taking into account the variation of the cooling function
+# Lambda(T, Z) with radius.
+#
+#
+# References:
+# [1] Croston et al. 2006, A&A, 459, 1007-1019
+# [2] McLaughlin, 1999, ApJ, 117, 2398-2427
+#
+#
+# Weitian LI
+# Created: 2016-06-10
+# Updated: 2016-06-10
+#
+
+
+import argparse
+
+import numpy as np
+
+
+class Projection:
+ """
+ Class that deals with projection from 3D volume density to 2D
+ surface density and vice versa.
+
+ The inner-most shell/cylinder is assumed to at the center with inner
+ radius of ZERO.
+ """
+ # number of shells/cylinders
+ N = 0
+ # inner and outer radii of each spherical shell or cylinders
+ rin = None
+ rout = None
+ # projection matrix from 3D volume density to 2D surface density
+ proj_mat = None
+
+ def __init__(self, rout):
+ self.N = len(rout)
+ self.rout = np.array(rout, dtype=float)
+ self.rin = np.concatenate([[0.0], self.rout[:-1]])
+ self.calc_projection_matrix()
+
+ def __str__(self):
+ return "%s: #%d shells: Rout(%s)" % (self.__class__.__name__,
+ self.N, self.rout)
+
+ def calc_projection_matrix(self):
+ """
+ Calculate the projection matrix according to the given outer radii.
+
+ Arguments:
+ * rout: (vector) outer radius of each SB annulus or spherical shell
+
+ Return:
+ * proj_mat: (matrix) an upper triangular matrix with element
+ [i, j] indicate the fraction of the emission from
+ shell j that is observed in annulus i.
+
+ N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) =
+ \sum_{j=i}^{m} (n(R_{j-1}, R_j) *
+ V_int(R_{j-1}, R_j; R_{i-1}, R_i))
+
+ References:
+ * ref.[1], eq.(1)
+ * ref.[2], eq.(A2)
+ """
+ proj_mat = np.zeros((self.N, self.N))
+ for i in range(self.N):
+ # loop over each annulus
+ rin = self.rin[i]
+ rout = self.rout[i]
+ area = np.pi * (rout**2 - rin**2)
+ for j in range(i, self.N):
+ # calculate the contribution from each shell to annulus i
+ rin2 = self.rin[j]
+ rout2 = self.rout[j]
+ v_int = self.intersection_volume(rin2, rout2, rin, rout)
+ proj_mat[i, j] = v_int / area
+ self.proj_mat = proj_mat
+
+ def project(self, densities):
+ """
+ Project the given 3D (volume) densities to 2D (surface) densities,
+ using the calculated projection matrix: 'proj_mat'.
+ """
+ densities = np.array(densities)
+ if self.rout.shape != densities.shape:
+ raise ValueError("different shapes of rout and given densities")
+ return self.proj_mat.dot(densities.T)
+
+ def deproject(self, densities):
+ """
+ Revert the projection procedure, i.e., deproject the given 2D
+ (surface) densities to derive the 3D (volume) densities.
+
+ \curl{N}(R_{i-1}, R_i) = N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1})
+
+ n(R_{i-1}, R_i) =
+ (N(R_{i-1}, R_i) * \pi * (R^2_i - R^2_{i-1}) /
+ V_int(R_{i-1}, R_i; R_{i-1}, R_i)) -
+ \sum_{j=i+1}^{m} (n(R_{j-1}, R_j) *
+ V_int(R_{j-1}, R_j; R_{i-1}, R_i) /
+ V_int(R_{i-1}, R_i; R_{i-1}, R_i))
+
+ Reference: ref.[2], eq.(A2)
+ """
+ densities = np.array(densities)
+ if self.rout.shape != densities.shape:
+ raise ValueError("different shapes of rout and given densities")
+ n_3d = np.zeros(densities.shape)
+ # peel the onion: from outside inward
+ for i in reversed(range(self.N)):
+ rin = self.rin[i]
+ rout = self.rout[i]
+ area = np.pi * (rout**2 - rin**2)
+ v_int = self.intersection_volume(rin, rout, rin, rout)
+ n_3d[i] = densities[i] * area / v_int
+ # subtract the projections from the outer shells
+ for j in range(i+1, self.N):
+ rin2 = self.rin[j]
+ rout2 = self.rout[j]
+ v_int2 = self.intersection_volume(rin2, rout2, rin, rout)
+ n_3d[i] -= n_3d[j] * v_int2 / v_int
+ return n_3d
+
+ @staticmethod
+ def intersection_volume(r1, r2, R1, R2):
+ """
+ Calculate the volume of intersection between the spherical shell of
+ r1 <= r <= r2 and the cylinder of R1 <= R <= R2.
+
+ Reference: ref.[2], eq.(A1)
+ """
+ def trunc_pow(x, p):
+ if x <= 0.0:
+ return 0
+ else:
+ return x ** p
+ #
+ v_int = (4.0*np.pi/3.0) * (trunc_pow((r2**2 - R1**2), 1.5) -
+ trunc_pow((r2**2 - R2**2), 1.5) +
+ trunc_pow((r1**2 - R2**2), 1.5) -
+ trunc_pow((r1**2 - R1**2), 1.5))
+ return v_int
+
+
+def testProjection():
+ rout = np.array([1, 2, 3, 4, 5], dtype=float)
+ proj = Projection(rout)
+ n1 = np.array([1, 1, 1, 1, 1], dtype=float)
+ np.testing.assert_array_almost_equal(proj.deproject(proj.project(n1)), n1)
+ s2 = np.array([1, 1, 1, 1, 1], dtype=float)
+ np.testing.assert_array_almost_equal(proj.project(proj.deproject(s2)), s2)
+ print("All tests PASSED!")
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Deproject the surface brightness profile (SBP)")
+ args = parser.parse_args()
+
+
+if __name__ == "__main__":
+ main()