#!/usr/bin/env python3 # # Aaron LI # Created: 2016-06-10 # Updated: 2016-06-27 # # Change logs: # 2016-06-27: # * Fit smoothing spline to SBP and cooling function profiles by # calling the R `mgcv::gam()`: "fit_spline()" and "eval_spline()" # * Update "plot()" to also plot the fitted smoothing spline # 2016-06-26: # * Split out method "save()" for class "BrightnessProfile" # * Split classes 'FitModel', 'ABModel' and 'PLCModel' into separate # module 'fitting_models.py' # 2016-06-25: # * Use 'InterpolatedUnivariateSpline' instead of 'interp1d' # 2016-06-24: # * Move class 'ChandraPixel' to module 'astro_params.py' # * Split class 'Projection' to a separate module 'projection.py' # * Move class 'DensityProfile' to tool 'calc_mass_potential.py' # * Split class 'AstroParams' to separate module 'astro_params.py' # 2016-06-23: # * Add configuration parameter 'sbpexp_rcut' # * Allow extrapolate the cooling function profile # * Add plot function to class 'BrightnessProfile' # * Update sample configuration file # * Remove obsolete class 'SurfaceBrightnessProfile' # 2016-06-22: # * Add class 'DensityProfile', the inversion to 'BrightnessProfile' # * Add classes 'AstroParams' and 'BrightnessProfile' # * Add class 'ChandraPixel' # * Update documentation # 2016-06-21: # * Add document about the gas density derivation # 2016-06-20: # * Use configuration file instead of the tedious command line arguments # 2016-06-16: # * Add methods 'save()', 'report()' and 'plot()' to class 'SBP' # 2016-06-15: # * Add command line arguments # * Add class 'SBP' for SBP background subtraction and extrapolation # 2016-06-14: # * Add class 'PLCModel' based on 'FitModel' # * Split class 'FitModel' from 'ABModel' # 2016-06-13: # * Add class 'ABModel' to support data scaling # * Implement primitive SBP deprojection approach for class 'DeprojectSBP' # """ Deproject the 2D surface brightness profile (SBP) into ??? The SBP deprojection is performed using a non-parametric approach with regularization which add the constraint that the 3D gas density profile should be smooth. ======================================================================= Surface brightness (`SUR_FLUX` column of the dmextract'ed radial profile): Brightness: [ photon s^-1 cm^-2 pixel^-2 ] where the 'cm^-2' is due to the instrumental effective area, and the 'pixel^-2' is corresponding to the solid angle with respect to the source (i.e., [ arcsec^-2 ]). The flux has dimension: Flux: [ photon s^-1 cm^-2 ] therefore, the dimension of brightness can also be expressed as: Brightness: [ Flux pixel^-2 ] = [ Flux sr^-1 ] The instrument and (time-normalized) exposure map has dimension: [ count photon^-1 cm^2 ] which is used to convert the instrument-specific counts image into physical- meaningful flux unit. Emission measure: EM = \int n_e n_H dV ~= (n_e^2 / ratio_eH) V [ cm^-3 ] where 'ratio_eH' is the ratio of electron density to proton density (n_H). APEC normalization returned by XSPEC is simply the *emission measure* of the gas scaled by the distance: eta = (\int n_e n_H dV) / (4 pi (D_A (1+z))^2) assuming (ref. [4]): n_H ~= 0.826 n_e then the gas density (n_H or n_e) can be calculated. The flux calculated with the XSPEC `flux` command has dimension: Flux: [ photon s^-1 cm^-2 ] or [ erg s^-2 cm^-2 ] When use XSPEC APEC model to calculate the cooling function (Lambda), its normalization is calculated with EM = 1, therefore: norm = 1e-14 / (4 pi (D_A (1+z))^2) * EM = 1e-14 / (4 pi (D_A (1+z))^2) [ cm^-5 ] where the 'D_A' is the angular diameter distance which can be simply calculated from its redshift. With the Galactic absorption (nH), temperature (varies with radius), and abundance (assumed constant) been set, the cooling function is derived by using the XSPEC `flux` command. Therefore, cooling function has dimension: Lambda: [ Flux EM^-1 ] By deprojecting the surface brightness, the flux per volume can be derived, and EM can be further obtained by incorporating the cooling function, and finally the (3D) gas density can be determined. (projection): EM * Lambda / A -> Brightness where 'A' is the solid angle (i.e., area covered by the source). ======================================================================= References: [1] Croston et al. 2006, A&A, 459, 1007-1019 [2] McLaughlin, 1999, ApJ, 117, 2398-2427 [3] Bouchet, 1995, A&AS, 113, 167 [4] Ettori et al, 2013, Space Science Review, 177, 119-154 [5] AtomDB / APEC model: * http://www.atomdb.org/faq.php#DensityXSPECnorm * https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XSmodelApec.html Sample configuration file: ------------------------------------------------------------ ## Configuration for `deproject_sbp.py` ## Date: 2016-06-23 # config file for SBP fitting (e.g., sbpfit.conf) sbpfit_config = sbpfit.conf # input cooling function profile coolfunc_profile = coolfunc_profile.txt # redshift of the object (for pixel to distance conversion) redshift = ## SBP extrapolation # cut radius from which the SBP is fitted for extrapolation, # specified by the ratio w.r.t sbpfit rc (default: 1.2 * rc) sbpexp_rcut_ratio = 1.2 # or directly specify the cut radius (override above rcut ratio) sbpexp_rcut = # output of the extrapolated SBP sbpexp_outfile = sbpexp.csv # extrapolation model information sbpexp_json = sbpexp.json # plot of the SBP extrapolation sbpexp_image = sbpexp.png ## Density profiles # deprojected 3D electron number density profile ne_profile = ne_profile.txt # deprojected 3D gas mass density profile rho_gas_profile = rho_gas_profile.txt # image of the density profiles (electron density and/or gas density) density_profile_image = density_profile.png ------------------------------------------------------------ """ import argparse import json from collections import OrderedDict import astropy.units as au import numpy as np import pandas as pd import scipy.optimize as optimize import scipy.interpolate as interpolate import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from configobj import ConfigObj import rpy2.robjects as ro from rpy2.robjects.packages import importr from astro_params import AstroParams, ChandraPixel from projection import Projection from fitting_models import ABModel, PLCModel plt.style.use("ggplot") class DeprojectSBP: """ Deproject the observed SBP to derive the 3D emission measure (EM) profile, using a regularization technique. TODO: * add 'mask' support * implement 'optimize_lbd()' References: ref.[1] """ # input SBP data: [r, r_err, s, s_err] r = None r_err = None s = None s_err = None # mask used to exclude specified data point for cross-validation mask = None # 'Projection' instance for this SBP projector = None # 'ABModel' instance to fit the deprojected EM profile for rescaling data abmodel = None # smoothing parameter to balance between fidelity (chisq) and # consistency with the applied regularization constraint. lbd = 1.0 # optimization method for scipy minimize opt_method = "Powell" # scipy optimize results from 'self.deproject()' deproject_res = None def __init__(self, r, r_err=None, s=None, s_err=None, lbd=1.0, opt_method="Powell"): self.load_data(r=r, r_err=r_err, s=s, s_err=s_err) self.projector = Projection(rout=self.r+self.r_err) self.abmodel = ABModel(scale=True) self.lbd = lbd self.opt_method = opt_method def load_data(self, r, r_err=None, s=None, s_err=None): if r.ndim == 2 and r.shape[1] == 4: # 4-column data self.r = r[:, 0].copy() self.r_err = r[:, 1].copy() self.s = r[:, 2].copy() self.s_err = r[:, 3].copy() else: self.r = np.array(r) self.r_err = np.array(r_err) self.s = np.array(s) self.s_err = np.array(s_err) self.mask = np.ones(self.r.shape, dtype=np.bool) def deproject(self): """ Deproject the observed SBP through direct deprojection calculation. """ self.em = self.projector.deproject(self.s) return self.em def deproject_regularize(self, lbd=None, opt_method=None): """ Deproject the observed SBP to derive the 3D EM profile by minimizing the objective function with regularization technique. XXX: Since we just deproject the observed SBP without considering the PSF convolution effect, the 3D EM profile can be just solved, therefore, there is no need (also no way) to optimize the smoothing parameter 'lambda'. """ def fobj(x): return self.f_objective(x, scaled=True) def callback(x): # NOTE: 'x' here is the scaled EM solution x_unscaled = self.unscale_data(x) self.update_abmodel(x_unscaled) if lbd is not None: self.lbd = lbd if opt_method is None: opt_method = self.opt_method # initial guess em0 = self.projector.deproject(self.s) # scale the EM data to reduce the dynamical range em0_scaled = self.scale_data(em0, update_params=True) res = optimize.minimize(fun=fobj, x0=em0_scaled, method=opt_method, callback=callback, options={"disp": True}) self.deproject_res = res self.em = self.unscale_data(res.x) return self.em def update_abmodel(self, x, xerr=None, update_params=False): """ Load the supplied data into self.abmodel, and perform fitting. If the errors/uncertainties is not specified, it is assumed to have the same relative errors as the observed SBP. """ if xerr is None: x_err = x * self.s_err / self.s self.abmodel.load_data(xdata=self.r, xerr=self.r_err, ydata=x, yerr=x_err, update_params=update_params) self.abmodel.fit() def scale_data(self, x, xerr=None, update_params=False): """ Scale the data (i.e., 3D EM profile) by dividing the fitted AB model. If the errors/uncertainties is not specified, it is assumed to have the same relative errors as the observed SBP. """ self.update_abmodel(x=x, xerr=xerr, update_params=update_params) x_fitted = self.abmodel.f(self.r) x_scaled = x / x_fitted return x_scaled def unscale_data(self, x): """ Undo the data scaling by multiplying the same fitted model previously used to scale the data. """ x_fitted = self.abmodel.f(self.r) x_unscaled = x * x_fitted return x_unscaled def f_objective(self, x, scaled=False): """ The objective function to be minimized, in order to derive the best solution (i.e., deprojected SBP) for the observed SBP. This objective function is a combination of plain chi-squared and a regularization constraint. 'lbd' is the parameter to balance the goodness-of-fit and the regularization constraint. References: ref.[1], eq.(2) """ return (self.f_chisq(x, scaled=scaled) + self.lbd * self.f_constraint(x, scaled=scaled)) def f_residual(self, x, scaled=False): """ Calculate the residuals of each data point for the solution. The current solution (i.e., 3D EM profile) is first projected into the 2D SBP, then compared to the observed SBP. """ if scaled: x = self.unscale_data(x) x_2d = self.projector.project(x) residuals = (x_2d - self.s) / self.s_err return residuals def f_chisq(self, x, scaled=False): """ Function to calculate the chi-squared value of the current solution with respect to the data. """ chisq = np.sum(self.f_residual(x, scaled=scaled) ** 2) return chisq def f_constraint(self, x, scaled=False): """ Function to calculate the value of regularization constraint. References: [1] ref.[1], eq.(3) [2] ref.[3], eq.(18) """ if not scaled: x = self.scale_data(x) # constraint = np.sum((x[:-1] + x[1:]) ** 2) constraint = np.sum((x[:-2] - 2*x[1:-1] + x[2:]) ** 2) return constraint def optimize_lbd(self, lbd0=None): """ Find the optimal smoothing parameter 'lbd' by using the cross-validation method. References: ref.[3], eq.(23) """ if lbd0 is not None: self.lbd = lbd0 pass def predict_obs(self): """ Predict the observation data (i.e., surface brightness) by projecting the interpolated solved EM profile. """ pass def plot(self, ax=None, fig=None): if ax is None: fig, ax = plt.subplots(1, 1) # SBP data points eb = ax.errorbar(self.r, self.s, xerr=self.r_err, yerr=self.s_err, fmt="none", elinewidth=2, capthick=2, label="Brightness profile") r_min = 1.0 r_max = max(self.r + self.r_err) s_min = min(self.s) / 1.2 s_max = max(self.s + self.s_err) * 1.2 ax.set_xlim(r_min, r_max) ax.set_ylim(s_min, s_max) ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel("Radius (%s)" % "pixel") ax.set_ylabel(r"Surface Brightness (photons/cm$^2$/pixel$^2$/s)") # deprojected EM profile ax2 = ax.twinx() line, = ax2.plot(self.r, self.em, color="black", linestyle="solid", linewidth=2, label="EM profile") em_min = min(self.em) / 1.2 em_max = max(self.em) * 1.2 ax2.set_xlim(r_min, r_max) ax2.set_ylim(em_min, em_max) ax2.set_yscale(ax.get_yscale()) ax2.set_ylabel(r"Deprojected Emission Measure (???)") # legend handles = [eb, line] labels = [h.get_label() for h in handles] ax.legend(handles=handles, labels=labels, loc=0) fig.tight_layout() return (fig, ax, ax2) class SBP: """ X-ray surface brightness profile class. This class deals with SBP background subtraction and SBP extrapolation. """ # input SBP data: [r, r_err, s, s_err] r = None r_err = None s = None s_err = None # uniform background been subtracted bkg = None # cut/minimal radius from which the SBP is fitted to the PLCModel rcut = None # PLCModel instance used to extrapolate the SBP plcmodel = None def __init__(self, r, r_err=None, s=None, s_err=None, rcut=None): self.load_data(r=r, r_err=r_err, s=s, s_err=s_err, rcut=rcut) self.plcmodel = PLCModel(scale=True) def load_data(self, r, r_err=None, s=None, s_err=None, rcut=None): if r.ndim == 2 and r.shape[1] == 4: # 4-column data self.r = r[:, 0].copy() self.r_err = r[:, 1].copy() self.s = r[:, 2].copy() self.s_err = r[:, 3].copy() else: self.r = np.array(r) self.r_err = np.array(r_err) self.s = np.array(s) self.s_err = np.array(s_err) self.rcut = rcut def subtract_bkg(self, bkg): """ Subtract the uniform background from the brightness. The value of background can be acquired by fitting the whole or core-exclude SBP with model consisting of a plain beta model and a constant. The "AB model" maybe also applicable. """ self.bkg = bkg self.s -= bkg self.bkg_subtracted = True def extrapolate(self, rcut=None): """ Extrapolate the SBP by assuming that the outer SBP follows the following relation: S_X = A * r^{-alpha}, which can be determined by model fitting. The SBP is extrapolated to the region where the brightness is lower than the current observed minimal brightness by one order of magnitude, and the extrapolated SBP bins have the same width and relative errors as the last SBP bin observed. Note that the uniform background should be subtracted first. Return: * self.r_extrapolated * self.r_err_extrapolated * self.s_extrapolated * self.s_err_extrapolated * self.mask_extrapolated """ if rcut is not None: self.rcut = rcut self.mask = self.r >= self.rcut self.plcmodel.load_data(xdata=self.r[self.mask], ydata=self.s[self.mask], xerr=self.r_err[self.mask], yerr=self.s_err[self.mask], update_params=True) self.plcmodel.set_param("bkg", value=0.0, vary=False) self.plcmodel.fit() last_r_err = self.r_err[-1] last_s = self.s[-1] last_s_err = self.s_err[-1] # r_exp = self.r.tolist() r_err_exp = self.r_err.tolist() s_exp = self.s.tolist() s_err_exp = self.s_err.tolist() mask_exp = [False] * len(r_exp) # do extrapolation r_tmp = r_exp[-1] + 2*r_err_exp[-1] s_tmp = self.plcmodel.f(r_tmp) while s_tmp > last_s / 10.0: r_exp.append(r_tmp) r_err_exp.append(last_r_err) s_exp.append(s_tmp) s_err_exp.append(s_tmp * last_s_err / last_s) mask_exp.append(True) r_tmp = r_exp[-1] + 2*r_err_exp[-1] s_tmp = self.plcmodel.f(r_tmp) # convert to numpy array self.r_extrapolated = np.array(r_exp) self.r_err_extrapolated = np.array(r_err_exp) self.s_extrapolated = np.array(s_exp) self.s_err_extrapolated = np.array(s_err_exp) self.mask_extrapolated = np.array(mask_exp) def report(self, outfile=None): """ Report the extrapolation model fitting results. """ results = OrderedDict([ ("bkg", self.bkg), ("bkg_subtracted", self.bkg_subtracted), ("rcut", self.rcut), ("model", self.plcmodel.name), ("params", OrderedDict([ (pn, [par.value, par.min, par.max, par.vary]) for pn, par in self.plcmodel.params.items() ])), ]) results_json = json.dumps(results, indent=2) if outfile is None: print(results_json) else: open(outfile, "w").write(results_json+"\n") def plot(self, ax=None, fig=None): """ Make a plot of the SBP extrapolation. """ if ax is None: fig, ax = plt.subplots(1, 1) # ignored data points mask_ignore = np.logical_not(self.mask) if np.sum(mask_ignore) > 0: ax.errorbar(self.r[mask_ignore], self.s[mask_ignore], xerr=self.r_err[mask_ignore], yerr=self.s_err[mask_ignore], fmt="none", elinewidth=1, capthick=1) # data points used to fit the PLC model ax.errorbar(self.r[self.mask], self.s[self.mask], xerr=self.r_err[self.mask], yerr=self.s_err[self.mask], fmt="none", elinewidth=2, capthick=2) # extrapolated data points ax.errorbar(self.r_extrapolated[self.mask_extrapolated], self.s_extrapolated[self.mask_extrapolated], xerr=self.r_err_extrapolated[self.mask_extrapolated], yerr=self.s_err_extrapolated[self.mask_extrapolated], fmt="none", elinewidth=1, capthick=1) # original data points without background subtraction eb = ax.errorbar(self.r, self.s+self.bkg, xerr=self.r_err, yerr=self.s_err, fmt="none", elinewidth=1, capthick=1) eb[-1][0].set_linestyle("dashdot") eb[-1][1].set_linestyle("dashdot") # PLC model mask_fit = self.mask_extrapolated.copy() mask_fit[:len(self.mask)] = self.mask r_fit = self.r_extrapolated[mask_fit] s_fit = self.plcmodel.f(r_fit) ax.plot(r_fit, s_fit, color="black", linestyle="solid") # adjust layout r_min = 1.0 r_max = self.r_extrapolated[-1] + self.r_err_extrapolated[-1] s_min = min(self.s_extrapolated) / 1.2 s_max = max(self.s_extrapolated + self.s_err_extrapolated) * 1.2 ax.set_xscale("log") ax.set_yscale("log") ax.set_xlim(r_min, r_max) ax.set_ylim(s_min, s_max) # labels ax.set_xlabel("Radius (%s)" % "pixel") ax.set_ylabel(r"Surface Brightness (photons/cm$^2$/pixel$^2$/s)") ax.text(x=r_max/1.2, y=s_max/1.2, s=r"reduced $\chi^2$: %.2f / %.2f = %.2f" % ( self.plcmodel.fitted.chisqr, self.plcmodel.fitted.nfree, self.plcmodel.fitted.chisqr/self.plcmodel.fitted.nfree), horizontalalignment="right", verticalalignment="top") fig.tight_layout() return (fig, ax) def get_data(self): """ Get the extrapolated data, for following use. """ return np.column_stack([self.r_extrapolated, self.r_err_extrapolated, self.s_extrapolated, self.s_err_extrapolated]) def save(self, outfile): """ Save the (extrapolated) SBP to the given output file in CSV format. """ df = pd.DataFrame() df["radius"] = self.r_extrapolated df["radius_err"] = self.r_err_extrapolated df["brightness"] = self.s_extrapolated df["brightness_err"] = self.s_err_extrapolated df["flag_extrapolation"] = self.mask_extrapolated flag_fit = np.zeros(self.mask_extrapolated.shape, dtype=bool) flag_fit[:len(self.mask)] = self.mask df["flag_fit"] = flag_fit df.to_csv(outfile, header=True, index=False) ###################################################################### class BrightnessProfile: """ Calculate the electron number density and/or gas mass density profile by deprojecting the observed X-ray surface brightness profile and incorporating the cooling function profile. NOTE: * The radii should have unit [ pixel ] (Chandra pixel) * The brightness should have unit [ photon s^-1 cm^-2 pixel^-2 ], i.e., [ Flux pixel^-2 ] (radial profile column `SUR_FLUX`) """ # available splines SPLINES = ["brightness", "cooling_function"] # allowed density profile types DENSITY_TYPES = ["electron", "gas"] # input SBP data: [r, r_err, s, s_err] r = None r_err = None s = None s_err = None # redshift of the source z = None # `ChandraPixel` instance for unit conversion pixel = None # flag to indicate whether the units are converted units_converted = False # calculated electron density profile ne = None # calculated gas mass density profile rho_gas = None # fitted smoothing spline to the SBP s_spline = None s_spline_log10 = None # fitted smoothing spline to the cooling function profile cf_spline = None cf_spline_log10 = None # call R through `rpy2` mgcv = importr("mgcv") def __init__(self, sbp_data, cf_data, z): self.load_data(data=sbp_data) self.load_cf_data(data=cf_data) self.z = z self.pixel = ChandraPixel(z) def load_data(self, data): # 4-column SBP: [r, r_err, brightness, brightness_err] self.r = data[:, 0].copy() self.r_err = data[:, 1].copy() self.s = data[:, 2].copy() self.s_err = data[:, 3].copy() def load_cf_data(self, data): # 2-column cooling function profile self.cf_radius = data[:, 0].copy() self.cf_value = data[:, 1].copy() def convert_units(self): """ Convert the units of input data: radius: pixel -> cm brightness: Flux / pixel**2 -> Flux / cm**2 """ if not self.units_converted: cm_per_pixel = self.pixel.get_length().to(au.cm).value self.r *= cm_per_pixel self.r_err *= cm_per_pixel self.cf_radius *= cm_per_pixel self.s /= cm_per_pixel**2 self.s_err /= cm_per_pixel**2 self.units_converted = True def get_radius(self): return (self.r.copy(), self.r_err.copy()) def fit_spline(self, spline, log10=True): """ Fit a smoothing line to the specified spline data, by calling the R `mgcv::gam()` function. If 'log10' is True, the input data are first applied the log-scale transform, and then fitted by the smoothing spline. The fitted spline allows extrapolation. """ if spline not in self.SPLINES: raise ValueError("invalid spline: %s" % spline) # if spline == "brightness": if log10: x = ro.FloatVector(np.log10(self.r)) y = ro.FloatVector(np.log10(self.s)) self.s_spline_log10 = True else: x = ro.FloatVector(self.r) y = ro.FloatVector(self.s) self.s_spline_log10 = False weights = ro.FloatVector(self.s / self.s_err) self.s_spline = self.mgcv.gam( ro.Formula("y ~ s(x, bs='ps')"), weights=weights, data=ro.DataFrame({"x": x, "y": y}), method="REML") elif spline == "cooling_function": if log10: x = ro.FloatVector(np.log10(self.cf_radius)) y = ro.FloatVector(np.log10(self.cf_value)) self.cf_spline_log10 = True else: x = ro.FloatVector(self.cf_radius) y = ro.FloatVector(self.cf_value) self.cf_spline_log10 = False self.cf_spline = self.mgcv.gam( ro.Formula("y ~ s(x, bs='ps')"), data=ro.DataFrame({"x": x, "y": y}), method="REML") def eval_spline(self, spline, x): """ Evaluate the specified spline at the supplied positions. Also check whether the spline was fitted in the log-scale space, and transform the evaluated values if necessary. """ x = np.array(x) if x.shape == (): x = x.reshape((1,)) if spline == "brightness": spl = self.s_spline log10 = self.s_spline_log10 elif spline == "cooling_function": spl = self.cf_spline log10 = self.cf_spline_log10 else: raise ValueError("invalid spline: %s" % spline) # if log10: x_new = ro.ListVector({"x": ro.FloatVector(np.log10(x))}) y_pred = self.mgcv.predict_gam(spl, newdata=x_new) y_pred = 10 ** np.array(y_pred) else: x_new = ro.ListVector({"x": ro.FloatVector(x)}) y_pred = self.mgcv.predict_gam(spl, newdata=x_new) y_pred = np.array(y_pred) # if len(y_pred) == 1: return y_pred[0] else: return y_pred def calc_electron_density(self): """ Deproject the surface brightness profile to derive the 3D electron number density (and then gas mass density) profile by incorporating the cooling function profile. unit: [ cm^-3 ] if the units converted for input data """ if self.s_spline is None: self.fit_spline(spline="brightness", log10=True) if self.cf_spline is None: self.fit_spline(spline="cooling_function", log10=False) # s_new = self.eval_spline(spline="brightness", x=self.r) cf_new = self.eval_spline(spline="cooling_function", x=self.r) # projector = Projection(rout=self.r+self.r_err) s_deproj = projector.deproject(s_new) # emission measure per unit volume em_v = s_deproj / cf_new ne = np.sqrt(em_v * AstroParams.ratio_ne_np) self.ne = ne return ne def calc_gas_density(self): """ Calculate the gas mass density based the calculated electron number density. unit: [ g cm^-3 ] if the units converted for input data """ ne = self.calc_electron_density() rho = ne * AstroParams.mu_e * AstroParams.m_atom self.rho_gas = rho return rho def save(self, density_type, outfile): if density_type == "electron": data = np.column_stack([self.r, self.r_err, self.ne]) header = "radius[cm] radius_err[cm] " + \ "electron_number_density[cm^-3]" elif density_type == "gas": data = np.column_stack([self.r, self.r_err, self.rho_gas]) header = "radius[cm] radius_err[cm] " + \ "gas_mass_density[g/cm^3]" else: raise ValueError("unknown density_type: %s" % density_type) np.savetxt(outfile, data, header=header) def plot(self, ax=None, fig=None, density_type="electron"): if density_type not in self.DENSITY_TYPES: raise ValueError("invalid density_types: %s" % density_type) if density_type == "electron": density = self.ne d_name = "Deprojected electron number density" d_unit = "cm$^{-3}$" else: density = self.rho_gas d_name = "Deprojected gas mass density" d_unit = "g/cm$^3$" # if self.units_converted: # convert from [cm] to [kpc] r = self.r * au.cm.to(au.kpc) r_err = self.r_err * au.cm.to(au.kpc) r_unit = "kpc" s_unit = "flux/cm$^2$" else: r = self.r r_err = self.r_err r_unit = "pixel" s_unit = "flux/pixel$^2$" # if ax is None: fig, ax = plt.subplots(1, 1) # SBP data points eb = ax.errorbar(r, self.s, xerr=r_err, yerr=self.s_err, fmt="none", elinewidth=2, capthick=2, label="Brightness profile") # fitted smoothing spline to SBP s_new = self.eval_spline(spline="brightness", x=self.r) line1, = ax.plot(r, s_new, linestyle="dashed", linewidth=2, label="SBP smoothing spline") # r_min = 1.0 r_max = max(r + r_err) s_min = min(self.s) / 1.2 s_max = max(self.s + self.s_err) * 1.2 ax.set_xlim(r_min, r_max) ax.set_ylim(s_min, s_max) ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel("Radius (%s)" % r_unit) ax.set_ylabel(r"Surface brightness (%s)" % s_unit) # deprojected density profile ax2 = ax.twinx() line2, = ax2.plot(r, density, color="black", linestyle="solid", linewidth=2, label="Density profile") d_min = min(density) / 1.2 d_max = max(density) * 1.2 ax2.set_xlim(r_min, r_max) ax2.set_ylim(d_min, d_max) ax2.set_yscale(ax.get_yscale()) ax2.set_ylabel(r"%s (%s)" % (d_name, d_unit)) # legend handles = [eb, line1, line2] labels = [h.get_label() for h in handles] ax.legend(handles=handles, labels=labels, loc=0) fig.tight_layout() return (fig, ax, ax2) ###################################################################### def main(): parser = argparse.ArgumentParser( description="Deproject the surface brightness profile (SBP)") parser.add_argument("config", nargs="?", default="sbpdeproj.conf", help="config for SBP deprojection " + "(default: sbpdeproj.conf)") args = parser.parse_args() config = ConfigObj(args.config) sbpfit_conf = ConfigObj(config["sbpfit_config"]) try: sbpfit_outfile = sbpfit_conf[sbpfit_conf["model"]]["outfile"] except KeyError: sbpfit_outfile = sbpfit_conf["outfile"] sbpfit_results = json.load(open(sbpfit_outfile)) sbpdata = np.loadtxt(sbpfit_conf["sbpfile"]) rc = sbpfit_results["params"]["rc"][0] bkg = sbpfit_results["params"]["bkg"][0] print("SBP background subtraction and extrapolation ...") sbp = SBP(sbpdata) rcut = rc * config.as_float("sbpexp_rcut_ratio") try: rcut = config.as_float("sbpexp_rcut") except KeyError: pass sbp.subtract_bkg(bkg=bkg) sbp.extrapolate(rcut=rcut) sbp.save(outfile=config["sbpexp_outfile"]) sbp.report(outfile=config["sbpexp_json"]) fig = Figure(figsize=(10, 8)) FigureCanvas(fig) ax = fig.add_subplot(1, 1, 1) sbp.plot(ax=ax, fig=fig) fig.savefig(config["sbpexp_image"], dpi=150) # TODO: smooth the extrapolated SBP print("SBP deprojection -> density profile ...") redshift = config.as_float("redshift") cf_data = np.loadtxt(config["coolfunc_profile"]) sbpdata_extrapolated = sbp.get_data() brightness_profile = BrightnessProfile(sbp_data=sbpdata_extrapolated, cf_data=cf_data, z=redshift) brightness_profile.convert_units() brightness_profile.calc_electron_density() brightness_profile.save(density_type="electron", outfile=config["ne_profile"]) brightness_profile.calc_gas_density() brightness_profile.save(density_type="gas", outfile=config["rho_gas_profile"]) fig = Figure(figsize=(10, 8)) FigureCanvas(fig) ax = fig.add_subplot(1, 1, 1) brightness_profile.plot(ax=ax, fig=fig) fig.savefig(config["density_profile_image"], dpi=150) if __name__ == "__main__": main()