#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Aaron LI # Created: 2016-03-13 # Updated: 2016-04-21 # # Changelogs: # 2016-04-21: # * Plot another X axis with unit "r500", with R500 values marked # * Adjust output image size/resolution # 2016-04-20: # * Support "pix" and "kpc" units # * Allow ignore data w.r.t R500 value # * Major changes to the config syntax # * Add commandline argument to select the sbp model # 2016-04-05: # * Allow fix parameters # 2016-03-31: # * Remove `ci_report()' # * Add `make_results()' to orgnize all results as s Python dictionary # * Report results as json string # 2016-03-28: # * Add `main()', `make_model()' # * Use `configobj' to handle configurations # * Save fit results and plot # * Add `ci_report()' # 2016-03-14: # * Refactor classes `FitModelSBeta' and `FitModelDBeta' # * Add matplotlib plot support # * Add `ignore_data()' and `notice_data()' support # * Add classes `FitModelSBetaNorm' and `FitModelDBetaNorm' # # TODO: # * to allow fit the outer beta component, then fix it, and fit the inner one # """ Fit the surface brightness profile (SBP) with the single-beta model: s(r) = s0 * [1.0 + (r/rc)^2] ^ (0.5-3*beta) + bkg or the double-beta model: s(r) = s01 * [1.0 + (r/rc1)^2] ^ (0.5-3*beta1) + s02 * [1.0 + (r/rc2)^2] ^ (0.5-3*beta2) + bkg Sample config file: ------------------------------------------------- name = obsid = r500_pix = r500_kpc = sbpfile = sbprofile.txt # unit of radius: pix (default) or kpc unit = pixel # sbp model: "sbeta" or "dbeta" model = sbeta #model = dbeta # output file to store the fitting results outfile = sbpfit.txt # output file to save the fitting plot imgfile = sbpfit.png # data range to be ignored during fitting (same unit as the above "unit") #ignore = 0.0-20.0, # specify the ignore range w.r.t R500 ("r500_pix" or "r500_kpc" required) #ignore_r500 = 0.0-0.15, [sbeta] # model-related options (OVERRIDE the upper level options) outfile = sbpfit_sbeta.txt imgfile = sbpfit_sbeta.png #ignore = 0.0-20.0, #ignore_r500 = 0.0-0.15, [[params]] # model parameters # name = initial, lower, upper, variable (FIXED/False to fix the parameter) s0 = 1.0e-8, 0.0, 1.0e-6 rc = 30.0, 5.0, 1.0e4 #rc = 30.0, 5.0, 1.0e4, FIXED beta = 0.7, 0.3, 1.1 bkg = 1.0e-10, 0.0, 1.0e-8 [dbeta] outfile = sbpfit_dbeta.txt imgfile = sbpfit_dbeta.png #ignore = 0.0-20.0, #ignore_r500 = 0.0-0.15, [[params]] s01 = 1.0e-8, 0.0, 1.0e-6 rc1 = 50.0, 10.0, 1.0e4 beta1 = 0.7, 0.3, 1.1 s02 = 1.0e-8, 0.0, 1.0e-6 rc2 = 30.0, 2.0, 5.0e2 beta2 = 0.7, 0.3, 1.1 bkg = 1.0e-10, 0.0, 1.0e-8 ------------------------------------------------- """ __version__ = "0.6.1" __date__ = "2016-04-21" import numpy as np import lmfit import matplotlib.pyplot as plt from configobj import ConfigObj from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import os import sys import re import argparse import json from collections import OrderedDict plt.style.use("ggplot") class FitModel: """ Meta-class of the fitting model. The supplied `func' should have the following syntax: y = f(x, params) where the `params' is the parameters to be fitted, and should be provided as well. """ def __init__(self, name=None, func=None, params=lmfit.Parameters()): self.name = name self.func = func self.params = params def f(self, x): return self.func(x, self.params) def get_param(self, name=None): """ Return the requested `Parameter' object or the whole `Parameters' object of no name supplied. """ try: return self.params[name] except KeyError: return self.params def set_param(self, name, *args, **kwargs): """ Set the properties of the specified parameter. """ param = self.params[name] param.set(*args, **kwargs) def plot(self, params, xdata, ax): """ Plot the fitted model. """ f_fitted = lambda x: self.func(x, params) ydata = f_fitted(xdata) ax.plot(xdata, ydata, 'k-') class FitModelSBeta(FitModel): """ The single-beta model to be fitted. Single-beta model, with a constant background. """ params = lmfit.Parameters() params.add_many( # (name, value, vary, min, max, expr) ("s0", 1.0e-8, True, 0.0, 1.0e-6, None), ("rc", 30.0, True, 1.0, 1.0e4, None), ("beta", 0.7, True, 0.3, 1.1, None), ("bkg", 1.0e-9, True, 0.0, 1.0e-7, None)) @staticmethod def sbeta(r, params): parvals = params.valuesdict() s0 = parvals["s0"] rc = parvals["rc"] beta = parvals["beta"] bkg = parvals["bkg"] return s0 * np.power((1 + (r/rc)**2), (0.5 - 3*beta)) + bkg def __init__(self): super(self.__class__, self).__init__(name="Single-beta", func=self.sbeta, params=self.params) def plot(self, params, xdata, ax): """ Plot the fitted model, as well as the fitted parameters. """ super(self.__class__, self).plot(params, xdata, ax) ydata = self.sbeta(xdata, params) # fitted paramters ax.vlines(x=params["rc"].value, ymin=min(ydata), ymax=max(ydata), linestyles="dashed") ax.hlines(y=params["bkg"].value, xmin=min(xdata), xmax=max(xdata), linestyles="dashed") ax.text(x=params["rc"].value, y=min(ydata), s="beta: %.2f\nrc: %.2f" % (params["beta"].value, params["rc"].value)) ax.text(x=min(xdata), y=min(ydata), s="bkg: %.3e" % params["bkg"].value, verticalalignment="top") class FitModelDBeta(FitModel): """ The double-beta model to be fitted. Double-beta model, with a constant background. NOTE: the first beta component (s01, rc1, beta1) describes the main and outer SBP; while the second beta component (s02, rc2, beta2) accounts for the central brightness excess. """ params = lmfit.Parameters() params.add("s01", value=1.0e-8, min=0.0, max=1.0e-6) params.add("rc1", value=50.0, min=10.0, max=1.0e4) params.add("beta1", value=0.7, min=0.3, max=1.1) #params.add("df_s0", value=1.0e-8, min=0.0, max=1.0e-6) #params.add("s02", expr="s01 + df_s0") params.add("s02", value=1.0e-8, min=0.0, max=1.0e-6) #params.add("df_rc", value=30.0, min=0.0, max=1.0e4) #params.add("rc2", expr="rc1 - df_rc") params.add("rc2", value=20.0, min=1.0, max=5.0e2) params.add("beta2", value=0.7, min=0.3, max=1.1) params.add("bkg", value=1.0e-9, min=0.0, max=1.0e-7) @staticmethod def beta1(r, params): """ This beta component describes the main/outer part of the SBP. """ parvals = params.valuesdict() s01 = parvals["s01"] rc1 = parvals["rc1"] beta1 = parvals["beta1"] bkg = parvals["bkg"] return s01 * np.power((1 + (r/rc1)**2), (0.5 - 3*beta1)) + bkg @staticmethod def beta2(r, params): """ This beta component describes the central/excess part of the SBP. """ parvals = params.valuesdict() s02 = parvals["s02"] rc2 = parvals["rc2"] beta2 = parvals["beta2"] return s02 * np.power((1 + (r/rc2)**2), (0.5 - 3*beta2)) @classmethod def dbeta(self, r, params): return self.beta1(r, params) + self.beta2(r, params) def __init__(self): super(self.__class__, self).__init__(name="Double-beta", func=self.dbeta, params=self.params) def plot(self, params, xdata, ax): """ Plot the fitted model, and each beta component, as well as the fitted parameters. """ super(self.__class__, self).plot(params, xdata, ax) beta1_ydata = self.beta1(xdata, params) beta2_ydata = self.beta2(xdata, params) ax.plot(xdata, beta1_ydata, 'b-.') ax.plot(xdata, beta2_ydata, 'b-.') # fitted paramters ydata = beta1_ydata + beta2_ydata ax.vlines(x=params["rc1"].value, ymin=min(ydata), ymax=max(ydata), linestyles="dashed") ax.vlines(x=params["rc2"].value, ymin=min(ydata), ymax=max(ydata), linestyles="dashed") ax.hlines(y=params["bkg"].value, xmin=min(xdata), xmax=max(xdata), linestyles="dashed") ax.text(x=params["rc1"].value, y=min(ydata), s="beta1: %.2f\nrc1: %.2f" % (params["beta1"].value, params["rc1"].value)) ax.text(x=params["rc2"].value, y=min(ydata), s="beta2: %.2f\nrc2: %.2f" % (params["beta2"].value, params["rc2"].value)) ax.text(x=min(xdata), y=min(ydata), s="bkg: %.3e" % params["bkg"].value, verticalalignment="top") class FitModelSBetaNorm(FitModel): """ The single-beta model to be fitted. Single-beta model, with a constant background. Normalized the `s0' and `bkg' parameters by take the logarithm. """ params = lmfit.Parameters() params.add_many( # (name, value, vary, min, max, expr) ("log10_s0", -8.0, True, -12.0, -6.0, None), ("rc", 30.0, True, 1.0, 1.0e4, None), ("beta", 0.7, True, 0.3, 1.1, None), ("log10_bkg", -9.0, True, -12.0, -7.0, None)) @staticmethod def sbeta(r, params): parvals = params.valuesdict() s0 = 10 ** parvals["log10_s0"] rc = parvals["rc"] beta = parvals["beta"] bkg = 10 ** parvals["log10_bkg"] return s0 * np.power((1 + (r/rc)**2), (0.5 - 3*beta)) + bkg def __init__(self): super(self.__class__, self).__init__(name="Single-beta", func=self.sbeta, params=self.params) def plot(self, params, xdata, ax): """ Plot the fitted model, as well as the fitted parameters. """ super(self.__class__, self).plot(params, xdata, ax) ydata = self.sbeta(xdata, params) # fitted paramters ax.vlines(x=params["rc"].value, ymin=min(ydata), ymax=max(ydata), linestyles="dashed") ax.hlines(y=(10 ** params["bkg"].value), xmin=min(xdata), xmax=max(xdata), linestyles="dashed") ax.text(x=params["rc"].value, y=min(ydata), s="beta: %.2f\nrc: %.2f" % (params["beta"].value, params["rc"].value)) ax.text(x=min(xdata), y=min(ydata), s="bkg: %.3e" % (10 ** params["bkg"].value), verticalalignment="top") class FitModelDBetaNorm(FitModel): """ The double-beta model to be fitted. Double-beta model, with a constant background. Normalized the `s01', `s02' and `bkg' parameters by take the logarithm. NOTE: the first beta component (s01, rc1, beta1) describes the main and outer SBP; while the second beta component (s02, rc2, beta2) accounts for the central brightness excess. """ params = lmfit.Parameters() params.add("log10_s01", value=-8.0, min=-12.0, max=-6.0) params.add("rc1", value=50.0, min=10.0, max=1.0e4) params.add("beta1", value=0.7, min=0.3, max=1.1) #params.add("df_s0", value=1.0e-8, min=0.0, max=1.0e-6) #params.add("s02", expr="s01 + df_s0") params.add("log10_s02", value=-8.0, min=-12.0, max=-6.0) #params.add("df_rc", value=30.0, min=0.0, max=1.0e4) #params.add("rc2", expr="rc1 - df_rc") params.add("rc2", value=20.0, min=1.0, max=5.0e2) params.add("beta2", value=0.7, min=0.3, max=1.1) params.add("log10_bkg", value=-9.0, min=-12.0, max=-7.0) @staticmethod def beta1(r, params): """ This beta component describes the main/outer part of the SBP. """ parvals = params.valuesdict() s01 = 10 ** parvals["log10_s01"] rc1 = parvals["rc1"] beta1 = parvals["beta1"] bkg = 10 ** parvals["log10_bkg"] return s01 * np.power((1 + (r/rc1)**2), (0.5 - 3*beta1)) + bkg @staticmethod def beta2(r, params): """ This beta component describes the central/excess part of the SBP. """ parvals = params.valuesdict() s02 = 10 ** parvals["log10_s02"] rc2 = parvals["rc2"] beta2 = parvals["beta2"] return s02 * np.power((1 + (r/rc2)**2), (0.5 - 3*beta2)) @classmethod def dbeta(self, r, params): return self.beta1(r, params) + self.beta2(r, params) def __init__(self): super(self.__class__, self).__init__(name="Double-beta", func=self.dbeta, params=self.params) def plot(self, params, xdata, ax): """ Plot the fitted model, and each beta component, as well as the fitted parameters. """ super(self.__class__, self).plot(params, xdata, ax) beta1_ydata = self.beta1(xdata, params) beta2_ydata = self.beta2(xdata, params) ax.plot(xdata, beta1_ydata, 'b-.') ax.plot(xdata, beta2_ydata, 'b-.') # fitted paramters ydata = beta1_ydata + beta2_ydata ax.vlines(x=params["log10_rc1"].value, ymin=min(ydata), ymax=max(ydata), linestyles="dashed") ax.vlines(x=params["rc2"].value, ymin=min(ydata), ymax=max(ydata), linestyles="dashed") ax.hlines(y=(10 ** params["bkg"].value), xmin=min(xdata), xmax=max(xdata), linestyles="dashed") ax.text(x=params["rc1"].value, y=min(ydata), s="beta1: %.2f\nrc1: %.2f" % (params["beta1"].value, params["rc1"].value)) ax.text(x=params["rc2"].value, y=min(ydata), s="beta2: %.2f\nrc2: %.2f" % (params["beta2"].value, params["rc2"].value)) ax.text(x=min(xdata), y=min(ydata), s="bkg: %.3e" % (10 ** params["bkg"].value), verticalalignment="top") class SbpFit: """ Class to handle the SBP fitting with single-/double-beta model. """ def __init__(self, model, method="lbfgsb", xdata=None, ydata=None, xerr=None, yerr=None, xunit="pix", name=None, obsid=None, r500_pix=None, r500_kpc=None): self.method = method self.model = model self.load_data(xdata=xdata, ydata=ydata, xerr=xerr, yerr=yerr, xunit=xunit) self.set_source(name=name, obsid=obsid, r500_pix=r500_pix, r500_kpc=r500_kpc) def set_source(self, name, obsid=None, r500_pix=None, r500_kpc=None): self.name = name try: self.obsid = int(obsid) except TypeError: self.obsid = None try: self.r500_pix = float(r500_pix) except TypeError: self.r500_pix = None try: self.r500_kpc = float(r500_kpc) except TypeError: self.r500_kpc = None try: self.kpc_per_pix = self.r500_kpc / self.r500_pix except (TypeError, ZeroDivisionError): self.kpc_per_pix = -1 def load_data(self, xdata, ydata, xerr, yerr, xunit="pix"): self.xdata = xdata self.ydata = ydata self.xerr = xerr self.yerr = yerr if xdata is not None: self.mask = np.ones(xdata.shape, dtype=np.bool) else: self.mask = None if xunit.lower() in ["pix", "pixel"]: self.xunit = "pix" elif xunit.lower() == "kpc": self.xunit = "kpc" else: raise ValueError("invalid xunit: %s" % xunit) def ignore_data(self, xmin=None, xmax=None, unit=None): """ Ignore the data points within range [xmin, xmax]. If xmin is None, then xmin=min(xdata); if xmax is None, then xmax=max(xdata). if unit is None, then assume the same unit as `self.xunit'. """ if unit is None: unit = self.xunit if xmin is not None: xmin = self.convert_unit(xmin, unit=unit) else: xmin = np.min(self.xdata) if xmax is not None: xmax = self.convert_unit(xmax, unit=unit) else: xmax = np.max(self.xdata) ignore_idx = np.logical_and(self.xdata >= xmin, self.xdata <= xmax) self.mask[ignore_idx] = False # reset `f_residual' self.f_residual = None def notice_data(self, xmin=None, xmax=None, unit=None): """ Notice the data points within range [xmin, xmax]. If xmin is None, then xmin=min(xdata); if xmax is None, then xmax=max(xdata). if unit is None, then assume the same unit as `self.xunit'. """ if unit is None: unit = self.xunit if xmin is not None: xmin = self.convert_unit(xmin, unit=unit) else: xmin = np.min(self.xdata) if xmax is not None: xmax = self.convert_unit(xmax, unit=unit) else: xmax = np.max(self.xdata) notice_idx = np.logical_and(self.xdata >= xmin, self.xdata <= xmax) self.mask[notice_idx] = True # reset `f_residual' self.f_residual = None def convert_unit(self, x, unit): """ Convert the value x in given unit to be the unit `self.xunit' """ if unit == self.xunit: return x elif (unit == "pix") and (self.xunit == "kpc"): return (x / self.r500_pix * self.r500_kpc) elif (unit == "kpc") and (self.xunit == "pix"): return (x / self.r500_kpc * self.r500_pix) elif (unit == "r500") and (self.xunit == "pix"): return (x * self.r500_pix) elif (unit == "r500") and (self.xunit == "kpc"): return (x * self.r500_kpc) else: raise ValueError("invalid units: %s vs. %s" % (unit, self.xunit)) def convert_to_r500(self, x, unit=None): """ Convert the value x in given unit to be in unit "r500". """ if unit is None: unit = self.xunit if unit == "r500": return x elif unit == "pix": return (x / self.r500_pix) elif unit == "kpc": return (x / self.r500_kpc) else: raise ValueError("invalid unit: %s" % unit) def set_residual(self): def f_residual(params): if self.yerr is None: return self.model.func(self.xdata[self.mask], params) - \ self.ydata else: return (self.model.func(self.xdata[self.mask], params) - \ self.ydata[self.mask]) / self.yerr[self.mask] self.f_residual = f_residual def fit(self, method=None): if method is None: method = self.method if not hasattr(self, "f_residual") or self.f_residual is None: self.set_residual() self.fitter = lmfit.Minimizer(self.f_residual, self.model.params) self.fitted = self.fitter.minimize(method=method) self.fitted_model = lambda x: self.model.func(x, self.fitted.params) def calc_ci(self, sigmas=[0.68, 0.90]): # `conf_interval' requires the fitted results have valid `stderr', # so we need to re-fit the model with method `leastsq'. fitted = self.fitter.minimize(method="leastsq", params=self.fitted.params) self.ci, self.trace = lmfit.conf_interval(self.fitter, fitted, sigmas=sigmas, trace=True) def make_results(self): """ Make the `self.results' dictionary which contains all the fitting results as well as the confidence intervals. """ fitted = self.fitted self.results = OrderedDict() ## fitting results self.results.update( nfev = fitted.nfev, ndata = fitted.ndata, nvarys = fitted.nvarys, # number of varible paramters nfree = fitted.nfree, # degree of freem chisqr = fitted.chisqr, redchi = fitted.redchi, aic = fitted.aic, bic = fitted.bic) params = fitted.params pnames = list(params.keys()) pvalues = OrderedDict() for pn in pnames: par = params.get(pn) pvalues[pn] = [par.value, par.min, par.max, par.vary] self.results["params"] = pvalues ## confidence intervals if hasattr(self, "ci") and self.ci is not None: ci = self.ci ci_values = OrderedDict() ci_sigmas = [ "ci%02d" % (v[0]*100) for v in ci.get(pnames[0]) ] ci_names = sorted(list(set(ci_sigmas))) ci_idx = { k: [] for k in ci_names } for cn, idx in zip(ci_sigmas, range(len(ci_sigmas))): ci_idx[cn].append(idx) # parameters ci for pn in pnames: ci_pv = OrderedDict() pv = [ v[1] for v in ci.get(pn) ] # best pv_best = pv[ ci_idx["ci00"][0] ] ci_pv["best"] = pv_best # ci of each sigma pv2 = [ v-pv_best for v in pv ] for cn in ci_names[1:]: ci_pv[cn] = [ pv2[idx] for idx in ci_idx[cn] ] ci_values[pn] = ci_pv self.results["ci"] = ci_values def report(self, outfile=sys.stdout): if not hasattr(self, "results") or self.results is None: self.make_results() jd = json.dumps(self.results, indent=2) print(jd, file=outfile) def plot(self, ax=None, fig=None, r500_axis=True): """ Arguments: * r500_axis: whether to add a second X axis in unit "r500" """ if ax is None: fig, ax = plt.subplots(1, 1) # noticed data points eb = ax.errorbar(self.xdata[self.mask], self.ydata[self.mask], xerr=self.xerr[self.mask], yerr=self.yerr[self.mask], fmt="none") # ignored data points ignore_mask = np.logical_not(self.mask) if np.sum(ignore_mask) > 0: eb = ax.errorbar(self.xdata[ignore_mask], self.ydata[ignore_mask], xerr=self.xerr[ignore_mask], yerr=self.yerr[ignore_mask], fmt="none") eb[-1][0].set_linestyle("-.") # fitted model xmax = self.xdata[-1] + self.xerr[-1] xpred = np.power(10, np.linspace(0, np.log10(xmax), 2*len(self.xdata))) ypred = self.fitted_model(xpred) ymin = min(min(self.ydata), min(ypred)) ymax = max(max(self.ydata), max(ypred)) self.model.plot(params=self.fitted.params, xdata=xpred, ax=ax) ax.set_xscale("log") ax.set_yscale("log") ax.set_xlim(1.0, xmax) ax.set_ylim(ymin/1.2, ymax*1.2) name = self.name if self.obsid is not None: name += "; %s" % self.obsid ax.set_title("Fitted Surface Brightness Profile (%s)" % name) ax.set_xlabel("Radius (%s)" % self.xunit) ax.set_ylabel(r"Surface Brightness (photons/cm$^2$/pixel$^2$/s)") ax.text(x=xmax, y=ymax, s="redchi: %.2f / %.2f = %.2f" % (self.fitted.chisqr, self.fitted.nfree, self.fitted.chisqr/self.fitted.nfree), horizontalalignment="right", verticalalignment="top") plot_ret = [fig, ax] if r500_axis: # Add a second X-axis with labels in unit "r500" # Credit: https://stackoverflow.com/a/28192477/4856091 try: ax.title.set_position([0.5, 1.1]) # raise title position ax2 = ax.twiny() # NOTE: the ORDER of the following lines MATTERS ax2.set_xscale(ax.get_xscale()) ax2_ticks = ax.get_xticks() ax2.set_xticks(ax2_ticks) ax2.set_xbound(ax.get_xbound()) ax2.set_xticklabels([ "%.2g" % self.convert_to_r500(x) for x in ax2_ticks ]) ax2.set_xlabel("Radius (r500; r500 = %s pix = %s kpc)" % (\ self.r500_pix, self.r500_kpc)) ax2.grid(False) plot_ret.append(ax2) except ValueError: # cannot convert X values to unit "r500" pass # automatically adjust layout fig.tight_layout() return plot_ret def make_model(config, modelname): """ Make the model with parameters set according to the config. """ if modelname == "sbeta": # single-beta model model = FitModelSBeta() elif modelname == "dbeta": # double-beta model model = FitModelDBeta() else: raise ValueError("Invalid model: %s" % modelname) # set initial values and bounds for the model parameters params = config[modelname]["params"] for p, value in params.items(): variable = True if len(value) == 4 and value[3].upper() in ["FIXED", "FALSE"]: variable = False model.set_param(name=p, value=float(value[0]), min=float(value[1]), max=float(value[2]), vary=variable) return model def main(): # parser for command line options and arguments parser = argparse.ArgumentParser( description="Fit surface brightness profile with " + \ "single-/double-beta model", epilog="Version: %s (%s)" % (__version__, __date__)) parser.add_argument("-V", "--version", action="version", version="%(prog)s " + "%s (%s)" % (__version__, __date__)) parser.add_argument("config", help="Config file for SBP fitting") # exclusive argument group for model selection grp_model = parser.add_mutually_exclusive_group(required=False) grp_model.add_argument("-s", "--sbeta", dest="sbeta", action="store_true", help="single-beta model for SBP") grp_model.add_argument("-d", "--dbeta", dest="dbeta", action="store_true", help="double-beta model for SBP") # args = parser.parse_args() config = ConfigObj(args.config) # determine the model name if args.sbeta: modelname = "sbeta" elif args.dbeta: modelname = "dbeta" else: modelname = config["model"] config_model = config[modelname] # determine the "outfile" and "imgfile" outfile = config.get("outfile") outfile = config_model.get("outfile", outfile) imgfile = config.get("imgfile") imgfile = config_model.get("imgfile", imgfile) # SBP fitting model model = make_model(config, modelname=modelname) # sbp data and fit object sbpdata = np.loadtxt(config["sbpfile"]) sbpfit = SbpFit(model=model, xdata=sbpdata[:, 0], xerr=sbpdata[:, 1], ydata=sbpdata[:, 2], yerr=sbpdata[:, 3], xunit=config.get("unit", "pix")) sbpfit.set_source(name=config["name"], obsid=config.get("obsid"), r500_pix=config.get("r500_pix"), r500_kpc=config.get("r500_kpc")) # apply data range ignorance if "ignore" in config.keys(): for ig in config.as_list("ignore"): xmin, xmax = map(float, ig.split("-")) sbpfit.ignore_data(xmin=xmin, xmax=xmax) if "ignore_r500" in config.keys(): for ig in config.as_list("ignore_r500"): xmin, xmax = map(float, ig.split("-")) sbpfit.ignore_data(xmin=xmin, xmax=xmax, unit="r500") # apply additional data range ignorance specified within model section if "ignore" in config_model.keys(): for ig in config_model.as_list("ignore"): xmin, xmax = map(float, ig.split("-")) sbpfit.ignore_data(xmin=xmin, xmax=xmax) if "ignore_r500" in config_model.keys(): for ig in config_model.as_list("ignore_r500"): xmin, xmax = map(float, ig.split("-")) sbpfit.ignore_data(xmin=xmin, xmax=xmax, unit="r500") # fit and calculate confidence intervals sbpfit.fit() sbpfit.calc_ci() sbpfit.report() with open(outfile, "w") as ofile: sbpfit.report(outfile=ofile) # make and save a plot fig = Figure(figsize=(10, 8)) canvas = FigureCanvas(fig) ax = fig.add_subplot(111) sbpfit.plot(ax=ax, fig=fig, r500_axis=True) fig.savefig(imgfile, dpi=150) if __name__ == "__main__": main() # vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: #