# Copyright (c) 2017 Aaron LI # MIT license """ Spherical utilities. """ import numpy as np def central_angle(p0, points): """ Calculate the central angle(s) between the points ``p0`` with respect to the other point(s) ``points`` on the sphere. Parameters ---------- p0 : 2-element float tuple/list (longitude/R.A., latitude/Dec.) coordinate of the reference point. (Unit: deg) points : 2-element float tuple/list, or 2-column float `~numpy` array Coordinates of the other point(s) (Unit: deg) Returns ------- angle : float, or 1D float `~numpy` array Calculated central angle(s) (Unit: deg) Algorithm --------- (radial, azimuthal, polar): (r, θ, φ) central_angle: α longitude/R.A.: λ = θ latitude/Dec.: δ = π/2 - φ Unit vector: r1_vec = (cos(θ1)*sin(φ1), sin(θ1)*sin(φ1), cos(φ1)) = (cos(λ1)*cos(δ1), sin(λ1)*cos(δ1), sin(δ1)) r2_vec = (cos(θ2)*sin(φ2), sin(θ2)*sin(φ2), cos(φ2)) = (cos(λ2)*cos(δ2), sin(λ2)*cos(δ2), sin(δ2)) Therefore the angle (α) between r1_vec and r2_vec: cos(α) = r1_vec * r2_vec = cos(δ1)*cos(δ2)*cos(λ1-λ2) + sin(δ1)*sin(δ2) References ---------- [1] Spherical Coordinates - Wolfram MathWorld http://mathworld.wolfram.com/SphericalCoordinates.html Eq.(19) [2] Great Circle - Wolfram MathWorld http://mathworld.wolfram.com/GreatCircle.html Eqs.(1,2,4) """ lon0, lat0 = np.deg2rad(p0) points = np.deg2rad(points) try: lon, lat = points[:, 0], points[:, 1] except IndexError: lon, lat = points # single point prod = (np.cos(lat0) * np.cos(lat) * np.cos(lon0-lon) + np.sin(lat0) * np.sin(lat)) alpha = np.arccos(prod) return np.rad2deg(alpha)