aboutsummaryrefslogtreecommitdiffstats
path: root/bin/calc_entropy.py
diff options
context:
space:
mode:
Diffstat (limited to 'bin/calc_entropy.py')
-rwxr-xr-xbin/calc_entropy.py104
1 files changed, 104 insertions, 0 deletions
diff --git a/bin/calc_entropy.py b/bin/calc_entropy.py
new file mode 100755
index 0000000..736fe7e
--- /dev/null
+++ b/bin/calc_entropy.py
@@ -0,0 +1,104 @@
+#!/usr/bin/env python3
+#
+# Calculate the entropy within the specified radius.
+#
+# Junhua GU
+# Weitian LI
+# 2016-06-07
+#
+
+import argparse
+import re
+from itertools import groupby
+import numpy as np
+
+
+def isplit(iterable, splitters):
+ """
+ Credit: https://stackoverflow.com/a/4322780/4856091
+ """
+ return [list(g) for k, g in groupby(iterable,
+ lambda x:x in splitters) if not k]
+
+
+def get_entropy(data, r):
+ """
+ Get the entropy *at* the specified radius.
+
+ XXX: whether to interpolate first?
+ """
+ radius = data[:, 0]
+ entropy = data[:, 1]
+ s = np.min(entropy[radius > r])
+ return s
+
+
+def read_merged_qdp(infile):
+ """
+ Read merged QDP with multiple group of data separated by "no no no".
+ """
+ lines = map(lambda line: re.sub(r"^\s*no\s+no\s+no.*$", "X",
+ line.strip(), flags=re.I),
+ open(infile).readlines())
+ lines = isplit(lines, ("X",))
+ data_groups = []
+ for block in lines:
+ data = [list(map(float, l.split())) for l in block]
+ data.append(np.row_stack(data))
+ return data_groups
+
+
+def calc_error(center_value, mc_values, ci=0.683):
+ """
+ Calculate the uncertainties/errors.
+ """
+ data = np.concatenate([[center_value], mc_values])
+ median, q_lower, q_upper = np.percentile(data, q=(50, 50-50*ci, 50+50*ci))
+ mean = np.mean(data)
+ std = np.std(data)
+ return {
+ "mean": mean,
+ "std": std,
+ "median": median,
+ "q_lower": q_lower,
+ "q_upper": q_upper,
+ }
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Calculate the entropy within the given radius")
+ parser.add_argument("-C", "--confidence-level", dest="ci",
+ type=float, default=0.683,
+ help="confidence level to estimate the errors")
+ parser.add_argument("center_data",
+ help="calculate central entropy profile " +
+ "(e.g., entropy_center.qdp)")
+ parser.add_argument("mc_data",
+ help="Merged QDP file of all the Monte Carlo " +
+ "simulated entropy profiles " +
+ "(e.g., summary_entropy.qdp)")
+ parser.add_argument("rout", type=float, help="outer radius (kpc)")
+ args = parser.parse_args()
+
+ center_data = np.loadtxt(args.center_data)
+ center_s = get_entropy(center_data, r=args.rout)
+
+ data_groups = read_merged_qdp(args.mc_data)
+ entropy_list = []
+ for dg in data_groups:
+ s = get_entropy(dg, r=args.rout)
+ entropy_list.append(s)
+ results = calc_error(center_s, entropy_list, ci=args.ci)
+ s_err_lower = results["q_lower"] - center_s
+ s_err_upper = results["q_upper"] - center_s
+
+ print("entropy= %e %+e/%+e keV cm^2 (ci=%.1f%%)" %
+ (center_s, s_err_lower, s_err_upper, args.ci * 100))
+ print("entropy(mean)= %e" % results["mean"])
+ print("entropy(median)= %e" % results["median"])
+ print("entropy(std)= %e" % results["std"])
+
+
+if __name__ == "__main__":
+ main()