aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2016-10-16 18:41:36 +0800
committerAaron LI <aaronly.me@outlook.com>2016-10-17 14:55:10 +0800
commitda938fdea17170b02c5390bed634a31d637402c9 (patch)
treeb8984d6d24f5a53135726b75bb264522cbccad56
parent641ec1b2bd9975cf40458314b8124f6999d10111 (diff)
downloadfg21sim-da938fdea17170b02c5390bed634a31d637402c9.tar.bz2
utils/grid.py: Implement "map_grid_to_healpix()"
The "map_grid_to_healpix()" maps the generated coordinate grid to a HEALPix map. Note that only effective HEALPix pixels are returned instead of a full HEALPix map. TODO: Try to avoid the explicit for loop to optimize the speed.
-rw-r--r--fg21sim/utils/grid.py38
1 files changed, 29 insertions, 9 deletions
diff --git a/fg21sim/utils/grid.py b/fg21sim/utils/grid.py
index cc99407..9bc1ec8 100644
--- a/fg21sim/utils/grid.py
+++ b/fg21sim/utils/grid.py
@@ -8,6 +8,7 @@ Grid utilities.
import numpy as np
from scipy import ndimage
+import healpy as hp
from .draw import ellipse
@@ -97,7 +98,7 @@ def make_grid_ellipse(center, size, resolution, rotation=None):
The array with elements representing the latitudes of each grid
pixel.
Also, the latitudes are fixed to be in the valid range [-90, 90].
- grid : 2D float `~numpy.ndarray`
+ gridmap : 2D float `~numpy.ndarray`
The array containing the specified ellipse, where the pixels
corresponding to the ellipse with positive values, while other pixels
are zeros.
@@ -118,12 +119,13 @@ def make_grid_ellipse(center, size, resolution, rotation=None):
r0, c0 = np.floor(np.array(shape) / 2.0).astype(np.int)
r_radius, c_radius = np.ceil(0.5*np.array(size)/resolution).astype(np.int)
rr, cc = ellipse(r0, c0, r_radius, c_radius, shape=shape)
- grid = np.zeros(shape)
- grid[rr, cc] = 1.0
+ gridmap = np.zeros(shape)
+ gridmap[rr, cc] = 1.0
if rotation is not None:
# Rotate the ellipse
- grid = ndimage.rotate(grid, angle=rotation, order=1, reshape=False)
- return (lon, lat, grid)
+ gridmap = ndimage.rotate(gridmap, angle=rotation, order=1,
+ reshape=False)
+ return (lon, lat, gridmap)
def map_grid_to_healpix(grid, nside):
@@ -141,17 +143,35 @@ def map_grid_to_healpix(grid, nside):
Returns
-------
- hpmap : 1D `~numpy.ndarray`
- Mapped HEALPix map in *RING* ordering.
+ indexes : 1D `~numpy.ndarray`
+ The indexes of the effective HEALPix pixels that are mapped from
+ the input coordinate grid. The indexes are in RING ordering.
+ values : 1D `~numpy.ndarray`
+ The values of each output HEALPix pixels with respect the above
+ indexes.
NOTE
----
Generally, the input coordinate grid has higher resolution than the
- output HEALPix map, so down-sampling is performed.
+ output HEALPix map, so down-sampling is performed by averaging the
+ pixels that map to the same HEALPix pixel.
However, note that the total flux is *NOT PRESERVED* for the mapping
(or reprojection) procedure.
XXX/TODO:
- Implement the flux-preserving algorithm (reference ???)
"""
- raise NotImplementedError("TODO")
+ lon, lat, gridmap = grid
+ phi = np.radians(lon)
+ theta = np.radians(90.0 - lat)
+ ipix = hp.ang2pix(nside, theta, phi, nest=False)
+ # Get the corresponding input grid pixels for each HEALPix pixel
+ indexes, counts = np.unique(ipix, return_counts=True)
+ shape = (len(indexes), max(counts))
+ datamap = np.zeros(shape) * np.nan
+ # TODO: how to avoid this explicit loop ??
+ for i, idx in enumerate(indexes):
+ pixels = gridmap[ipix == idx]
+ datamap[i, :len(pixels)] = pixels
+ values = np.nanmean(datamap, axis=1)
+ return (indexes, values)