diff options
author | Aaron LI <aly@aaronly.me> | 2017-12-31 16:34:55 +0800 |
---|---|---|
committer | Aaron LI <aly@aaronly.me> | 2017-12-31 16:34:55 +0800 |
commit | 46c36b299dbe29d2872ae1ae6d98f1bde320bad0 (patch) | |
tree | cd2c58cb516f559421e7ba1b7c55516c17fafaa8 /fg21sim/extragalactic/clusters/halo.py | |
parent | ea793b05168a31460a36bb22cab98108e35c05d0 (diff) | |
download | fg21sim-46c36b299dbe29d2872ae1ae6d98f1bde320bad0.tar.bz2 |
clusters/halo: calc turbulence velocity dispersion based on merger
Also update the description of option "extragalactic/halos/eta_turb"
and change its default value to 0.1
Diffstat (limited to 'fg21sim/extragalactic/clusters/halo.py')
-rw-r--r-- | fg21sim/extragalactic/clusters/halo.py | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/fg21sim/extragalactic/clusters/halo.py b/fg21sim/extragalactic/clusters/halo.py index 03e891c..47f8078 100644 --- a/fg21sim/extragalactic/clusters/halo.py +++ b/fg21sim/extragalactic/clusters/halo.py @@ -813,6 +813,44 @@ class RadioHalo: mass = rate * (t - t_merger) + self.M_main return mass + def _velocity_turb(self, t): + """ + Calculate the turbulence velocity dispersion (i.e., turbulence + Mach number). + + NOTE + ---- + During the merger, a fraction of the merger kinetic energy is + transferred into the turbulence within the assumed regions + (radius <= L, the injection scale). Then estimate the turbulence + velocity dispersion from its energy. + + Merger energy: + E_m ≅ 0.5 * f_gas * M_sub * v^2 + ≅ 0.5 * f_gas * M_sub * (G*M_main / R_vir) + Turbulence energy: + E_turb ≅ η_turb * E_m + ≅ 0.5 * M_turb * <v_turb^2> + = 0.5 * f_gas * M_main(<L) * <v_turb^2> + = 0.5 * f_gas * f_mass(L/R_vir) * M_main * <v_turb^2> + => Velocity dispersion: + <v_turb^2> ≅ (η_turb/f_mass) * (G*M_sub/R_vir) + + Returns + ------- + v_turb : float + The turbulence velocity dispersion + Unit: [km/s] + """ + mass = self.M_main + self.M_sub + z = COSMO.redshift(t) + R_vir = helper.radius_virial(mass=mass, z=z) * AUC.kpc2cm # [cm] + v2 = np.sqrt(AC.G * self.M_sub*AUC.Msun2g / R_vir) # [cm/s] + v2 *= AUC.cm2km # [km/s] + fmass = helper.fmass_nfw(self.f_lturb) + v_turb = v2 * np.sqrt(self.eta_turb / fmass) + return v_turb + def _magnetic_field(self, t): """ Calculate the mean magnetic field strength of the main cluster mass |