diff options
author | Aaron LI <aaronly.me@outlook.com> | 2016-10-25 13:09:58 +0800 |
---|---|---|
committer | Aaron LI <aaronly.me@outlook.com> | 2016-10-25 13:09:58 +0800 |
commit | f1f75c6d0c6997bd3df438deb672e898459a3a73 (patch) | |
tree | 7f8f98c42cb005700edcffede7b04a7a7c830d4c /fg21sim/utils | |
parent | 0d686facc40237dd8fab4d721f870681d1c1415b (diff) | |
download | fg21sim-f1f75c6d0c6997bd3df438deb672e898459a3a73.tar.bz2 |
utils/grid.py: Add optimized "make_coordinate_grid_fast()"
Optimize "make_coordinate_grid()" using "numba.jit", which improves the
speed a bit, since the other two functions (i.e., "make_grid_ellipse()",
and "map_grid_to_healpix()") are much slow and time-consuming.
TODO: optimize "make_grid_ellipse()" and "map_grid_to_healpix()"
Diffstat (limited to 'fg21sim/utils')
-rw-r--r-- | fg21sim/utils/grid.py | 60 |
1 files changed, 56 insertions, 4 deletions
diff --git a/fg21sim/utils/grid.py b/fg21sim/utils/grid.py index 04cc8f0..8831000 100644 --- a/fg21sim/utils/grid.py +++ b/fg21sim/utils/grid.py @@ -9,10 +9,12 @@ Grid utilities. import numpy as np from scipy import ndimage import healpy as hp +import numba as nb from .draw import ellipse +@nb.jit(nopython=True) def _wrap_longitudes(lon): """Wrap the longitudes for values that beyond the valid range [0, 360)""" lon[lon < 0] += 360 @@ -20,6 +22,7 @@ def _wrap_longitudes(lon): return lon +@nb.jit(nopython=True) def _wrap_latitudes(lat): """Wrap the latitudes for values that beyond the valid range [-90, 90]""" lat[lat < -90] = -lat[lat < -90] - 180 @@ -68,7 +71,56 @@ def make_coordinate_grid(center, size, resolution): idx_lon = _wrap_longitudes(idx_lon) idx_lat = _wrap_latitudes(idx_lat) lon, lat = np.meshgrid(idx_lon, idx_lat) - return lon, lat + return (lon, lat) + + +@nb.jit(nb.types.UniTuple(nb.float64[:, :], 2)( + nb.float64, nb.float64, nb.float64, nb.float64, nb.float64), + nopython=True) +def make_coordinate_grid_fast(lon_c, lat_c, size_lon, size_lat, resolution): + """Make a rectangle, Cartesian coordinate grid. + + This is the ``numba.jit`` optimized version of ``make_coordinate_grid``. + + Parameters + ---------- + lon_c, lat_c : float + The longitude and latitude of the center coordinate, + with longitude [0, 360) degree, latitude [-90, 90] degree. + size_lon, size_lat : float + The sizes of the grid along the longitude and latitude directions. + resolution : float + The grid resolution, unit [ degree ]. + + Returns + ------- + lon : 2D `~numpy.ndarray` + The array with elements representing the longitudes of each grid + pixel. The array is odd-sized, with the input center locating at + the exact grid central pixel. + Also, the longitudes are fixed to be in the valid range [0, 360). + lat : 2D `~numpy.ndarray` + The array with elements representing the latitudes of each grid + pixel. + Also, the latitudes are fixed to be in the valid range [-90, 90]. + """ + # Half number of pixels (excluding the center) + hn_lon = int(np.ceil(0.5*size_lon / resolution)) + hn_lat = int(np.ceil(0.5*size_lat / resolution)) + idx_lon = lon_c + np.arange(-hn_lon, hn_lon+1) * resolution + idx_lat = lat_c + np.arange(-hn_lat, hn_lat+1) * resolution + # Fix the longitudes and latitudes to be in the valid ranges + idx_lon = _wrap_longitudes(idx_lon) + idx_lat = _wrap_latitudes(idx_lat) + # ``numpy.meshgrid`` currently not supported by ``numba`` + shape = (len(idx_lat), len(idx_lon)) + lon = np.zeros(shape) + for i in range(shape[0]): + lon[i, :] = idx_lon + lat = np.zeros(shape) + for i in range(shape[1]): + lat[:, i] = idx_lat + return (lon, lat) def make_grid_ellipse(center, size, resolution, rotation=None): @@ -111,9 +163,9 @@ def make_grid_ellipse(center, size, resolution, rotation=None): The generated grid is square, determined by the major axis of the ellipse, therefore, we can simply rotate the ellipse without reshaping. """ - major = max(size) - size_square = (major, major) - lon, lat = make_coordinate_grid(center, size_square, resolution) + size_major = max(size) + lon, lat = make_coordinate_grid_fast(center[0], center[1], + size_major, size_major, resolution) shape = lon.shape # Fill the ellipse into the grid r0, c0 = np.floor(np.array(shape) / 2.0).astype(np.int) |