aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/clusters/halo.py
diff options
context:
space:
mode:
Diffstat (limited to 'fg21sim/extragalactic/clusters/halo.py')
-rw-r--r--fg21sim/extragalactic/clusters/halo.py19
1 files changed, 9 insertions, 10 deletions
diff --git a/fg21sim/extragalactic/clusters/halo.py b/fg21sim/extragalactic/clusters/halo.py
index 4cf6306..2b7994a 100644
--- a/fg21sim/extragalactic/clusters/halo.py
+++ b/fg21sim/extragalactic/clusters/halo.py
@@ -197,7 +197,7 @@ class RadioHalo1M:
"""
return self.age_merger
- def time_turbulence(self, t=None):
+ def duration_turb(self, t=None):
"""
The duration that the turbulence persists strong enough to be
able to effectively accelerate the electrons, which is
@@ -209,14 +209,13 @@ class RadioHalo1M:
Unit: [Gyr]
"""
t_merger = self._merger_time(t)
- mass_main = self.mass_main(t=t_merger)
- mass_sub = self.mass_sub(t=t_merger)
z_merger = COSMO.redshift(t_merger)
- vi = helper.velocity_impact(mass_main, mass_sub, z_merger)
+ M_main = self.mass_main(t=t_merger)
+ M_sub = self.mass_sub(t=t_merger)
L_turb = 2 * self.radius_turbulence(t_merger)
+ vi = helper.velocity_impact(M_main, M_sub, z_merger)
uconv = AUC.kpc2km * AUC.s2Gyr # [kpc]/[km/s] => [Gyr]
- time = uconv * 2*L_turb / vi # [Gyr]
- return time
+ return uconv * 2*L_turb / vi # [Gyr]
def mach_turbulence(self, t=None):
"""
@@ -717,8 +716,8 @@ class RadioHalo1M:
return False
t_merger = self._merger_time(t)
- t_turb = self.time_turbulence(t_merger)
- return (t >= t_merger) and (t <= t_merger + t_turb)
+ tau_turb = self.duration_turb(t_merger)
+ return (t >= t_merger) and (t <= t_merger + tau_turb)
def _energy_loss(self, gamma, t):
"""
@@ -884,7 +883,7 @@ class RadioHaloAM(RadioHalo1M):
return (mass1 + rate * (t - t1))
@property
- def time_turbulence_avg(self):
+ def duration_turb_avg(self):
"""
Calculate the time-averaged turbulence acceleration active time
within the period from ``age_begin`` to ``age_obs``.
@@ -893,7 +892,7 @@ class RadioHaloAM(RadioHalo1M):
"""
dt = self.time_step
xt = np.arange(self.age_begin, self.age_obs+dt/2, step=dt)
- t_turb = np.array([self.time_turbulence(t) for t in xt])
+ t_turb = np.array([self.duration_turb(t) for t in xt])
return np.sum(t_turb * dt) / (len(xt) * dt)
@property