diff options
Diffstat (limited to 'fg21sim/extragalactic/clusters')
-rw-r--r-- | fg21sim/extragalactic/clusters/halo.py | 39 |
1 files changed, 24 insertions, 15 deletions
diff --git a/fg21sim/extragalactic/clusters/halo.py b/fg21sim/extragalactic/clusters/halo.py index 81a185c..6b1d4a8 100644 --- a/fg21sim/extragalactic/clusters/halo.py +++ b/fg21sim/extragalactic/clusters/halo.py @@ -679,7 +679,7 @@ class RadioHalo: return helper.magnetic_field(mass=mass, z=z, configs=self.configs) @lru_cache() - def _gas_density_profile_f(self, t): + def _rho_gas_f(self, t): """ The gas density profile of the merged cluster. @@ -697,8 +697,7 @@ class RadioHalo: @lru_cache() def _velocity_turb(self, t): """ - Calculate the turbulence velocity dispersion (i.e., turbulence Mach - number). + Calculate the turbulence velocity dispersion. NOTE ---- @@ -707,15 +706,19 @@ class RadioHalo: Then estimate the turbulence velocity dispersion from its energy. Merger energy: - E_merger ≅ 0.5 * f_gas * M_sub * v_vir^2 - v_vir = sqrt(G*M_main / R_vir) + E_merger ≅ <ρ_gas> * v_i^2 * V_turb + V_turb = ᴨ * r_s^2 * R_vir Turbulence energy: - E_turb ≅ η_turb * E_merger - ≅ 0.5 * M_turb * <v_turb^2> + E_turb ≅ η_turb * E_merger ≅ 0.5 * M_turb * <v_turb^2> => Velocity dispersion: - <v_turb^2> ≅ v_vir^2 * η_turb*f_gas * (M_sub/M_turb) + <v_turb^2> ≅ 2*η_turb * <ρ_gas> * v_i^2 * V_turb / M_turb + M_turb = int_0^R_turb[ ρ_gas(r)*4ᴨ*r^2 ]dr where: - M_turb = int_0^R_turb ρ_gas(r)*4ᴨ*r^2 dr + <ρ_gas>: mean gas density of the main cluster + R_vir: virial radius of the main cluster + R_turb: radius of turbulence region + v_i: impact velocity + r_s: stripping radius of the in-falling sub-cluster Returns ------- @@ -724,17 +727,23 @@ class RadioHalo: Unit: [km/s] """ z = COSMO.redshift(t) - rho_gas_f = self._gas_density_profile_f(t) + rho_gas_f = self._rho_gas_f(t) R_turb = self.radius_turbulence(t) # [kpc] M_turb = 4*np.pi * integrate.quad(lambda r: rho_gas_f(r) * r**2, a=0, b=R_turb)[0] # [Msun] + M_main = self.mass_main(t) M_sub = self.mass_sub(t) - R_vir = helper.radius_virial(M_main+M_sub, z) # [kpc] - R_vir *= AUC.kpc2cm # [cm] - v2_vir = (AC.G * M_main*AUC.Msun2g / R_vir) * AUC.cm2km**2 - v2_turb = v2_vir * self.eta_turb*COSMO.baryon_fraction * (M_sub/M_turb) - return np.sqrt(v2_turb) + v_i = helper.velocity_impact(M_main, M_sub, z) # [km/s] + rho_main = helper.density_number_thermal(M_main, z) # [cm^-3] + rho_main *= AC.mu*AC.u * AUC.g2Msun * AUC.kpc2cm**3 # [Msun/kpc^3] + R_vir = helper.radius_virial(M_main, z) # [kpc] + r_s = self.radius_stripping(t) # [kpc] + + V_turb = np.pi * r_s**2 * R_vir # [kpc^3] + E_turb = self.eta_turb * rho_main * v_i**2 * V_turb + v2_turb = 2 * E_turb / M_turb # [km^2/s^2] + return np.sqrt(v2_turb) # [km/s] def _is_turb_active(self, t): """ |