diff options
Diffstat (limited to 'fg21sim/extragalactic/clusters')
| -rw-r--r-- | fg21sim/extragalactic/clusters/halo.py | 39 | 
1 files changed, 24 insertions, 15 deletions
| diff --git a/fg21sim/extragalactic/clusters/halo.py b/fg21sim/extragalactic/clusters/halo.py index 81a185c..6b1d4a8 100644 --- a/fg21sim/extragalactic/clusters/halo.py +++ b/fg21sim/extragalactic/clusters/halo.py @@ -679,7 +679,7 @@ class RadioHalo:          return helper.magnetic_field(mass=mass, z=z, configs=self.configs)      @lru_cache() -    def _gas_density_profile_f(self, t): +    def _rho_gas_f(self, t):          """          The gas density profile of the merged cluster. @@ -697,8 +697,7 @@ class RadioHalo:      @lru_cache()      def _velocity_turb(self, t):          """ -        Calculate the turbulence velocity dispersion (i.e., turbulence Mach -        number). +        Calculate the turbulence velocity dispersion.          NOTE          ---- @@ -707,15 +706,19 @@ class RadioHalo:          Then estimate the turbulence velocity dispersion from its energy.          Merger energy: -            E_merger ≅ 0.5 * f_gas * M_sub * v_vir^2 -            v_vir = sqrt(G*M_main / R_vir) +            E_merger ≅ <ρ_gas> * v_i^2 * V_turb +            V_turb = ᴨ * r_s^2 * R_vir          Turbulence energy: -            E_turb ≅ η_turb * E_merger -                   ≅ 0.5 * M_turb * <v_turb^2> +            E_turb ≅ η_turb * E_merger ≅ 0.5 * M_turb * <v_turb^2>          => Velocity dispersion: -            <v_turb^2> ≅ v_vir^2 * η_turb*f_gas * (M_sub/M_turb) +            <v_turb^2> ≅ 2*η_turb * <ρ_gas> * v_i^2 * V_turb / M_turb +            M_turb = int_0^R_turb[ ρ_gas(r)*4ᴨ*r^2 ]dr          where: -            M_turb = int_0^R_turb ρ_gas(r)*4ᴨ*r^2 dr +            <ρ_gas>: mean gas density of the main cluster +            R_vir: virial radius of the main cluster +            R_turb: radius of turbulence region +            v_i: impact velocity +            r_s: stripping radius of the in-falling sub-cluster          Returns          ------- @@ -724,17 +727,23 @@ class RadioHalo:              Unit: [km/s]          """          z = COSMO.redshift(t) -        rho_gas_f = self._gas_density_profile_f(t) +        rho_gas_f = self._rho_gas_f(t)          R_turb = self.radius_turbulence(t)  # [kpc]          M_turb = 4*np.pi * integrate.quad(lambda r: rho_gas_f(r) * r**2,                                            a=0, b=R_turb)[0]  # [Msun] +          M_main = self.mass_main(t)          M_sub = self.mass_sub(t) -        R_vir = helper.radius_virial(M_main+M_sub, z)  # [kpc] -        R_vir *= AUC.kpc2cm  # [cm] -        v2_vir = (AC.G * M_main*AUC.Msun2g / R_vir) * AUC.cm2km**2 -        v2_turb = v2_vir * self.eta_turb*COSMO.baryon_fraction * (M_sub/M_turb) -        return np.sqrt(v2_turb) +        v_i = helper.velocity_impact(M_main, M_sub, z)  # [km/s] +        rho_main = helper.density_number_thermal(M_main, z)  # [cm^-3] +        rho_main *= AC.mu*AC.u * AUC.g2Msun * AUC.kpc2cm**3  # [Msun/kpc^3] +        R_vir = helper.radius_virial(M_main, z)  # [kpc] +        r_s = self.radius_stripping(t)  # [kpc] + +        V_turb = np.pi * r_s**2 * R_vir  # [kpc^3] +        E_turb = self.eta_turb * rho_main * v_i**2 * V_turb +        v2_turb = 2 * E_turb / M_turb  # [km^2/s^2] +        return np.sqrt(v2_turb)  # [km/s]      def _is_turb_active(self, t):          """ | 
