diff options
Diffstat (limited to 'fg21sim/extragalactic/pointsources/fr2.py')
-rw-r--r-- | fg21sim/extragalactic/pointsources/fr2.py | 382 |
1 files changed, 0 insertions, 382 deletions
diff --git a/fg21sim/extragalactic/pointsources/fr2.py b/fg21sim/extragalactic/pointsources/fr2.py deleted file mode 100644 index ec565d1..0000000 --- a/fg21sim/extragalactic/pointsources/fr2.py +++ /dev/null @@ -1,382 +0,0 @@ -# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> -# MIT license - -import numpy as np -import healpy as hp - -from .base import BasePointSource -from .psparams import PixelParams -from ...utils import grid -from ...utils import convert - - -class FRII(BasePointSource): - """ - Generate Faranoff-Riley II (FRII) AGN - - Parameters - ---------- - lobe_maj: float - The major half axis of the lobe - lobe_min: float - The minor half axis of the lobe - lobe_ang: float - The rotation angle of the lobe correspoind to line of sight - - Reference - ---------- - [1] Wang J et al., - "How to Identify and Separate Bright Galaxy Clusters from the - Low-frequency Radio Sky?", - 2010, ApJ, 723, 620-633. - http://adsabs.harvard.edu/abs/2010ApJ...723..620W - [2] Fast cirles drawing - https://github.com/liweitianux/fg21sim/fg21sim/utils/draw.py - https://github.com/liweitianux/fg21sim/fg21sim/utils/grid.py - """ - - def __init__(self, configs): - super().__init__(configs) - self.columns.extend( - ['lobe_maj (rad)', 'lobe_min (rad)', 'lobe_ang (deg)']) - self.nCols = len(self.columns) - self._set_configs() - # Paramters for core/lobe ratio - # Willman et al. 2008 Sec2.5.(iii)-(iv) - self.xmed = -2.8 - # Lorentz factor of the jet - self.gamma = 8 - # Number density matrix - self.rho_mat = self.calc_number_density() - # Cumulative distribution of z and lumo - self.cdf_z, self.cdf_lumo = self.calc_cdf() - - def _set_configs(self): - """Load the configs and set the corresponding class attributes""" - super()._set_configs() - pscomp = "extragalactic/pointsources/FRII/" - # point sources amount - self.num_ps = self.configs.getn(pscomp+"numps") - # prefix - self.prefix = self.configs.getn(pscomp+"prefix") - # redshift bin - z_type = self.configs.getn(pscomp+"z_type") - if z_type == 'custom': - start = self.configs.getn(pscomp+"z_start") - stop = self.configs.getn(pscomp+"z_stop") - step = self.configs.getn(pscomp+"z_step") - self.zbin = np.arange(start, stop + step, step) - else: - self.zbin = np.arange(0.1, 10, 0.05) - # luminosity bin - lumo_type = self.configs.getn(pscomp+"lumo_type") - if lumo_type == 'custom': - start = self.configs.getn(pscomp+"lumo_start") - stop = self.configs.getn(pscomp+"lumo_stop") - step = self.configs.getn(pscomp+"lumo_step") - self.lumobin = np.arange(start, stop + step, step) - else: - self.lumobin = np.arange(25.5, 30.5, 0.1) # [W/Hz/sr] - - def calc_number_density(self): - """ - Calculate number density rho(lumo,z) of FRI - - References - ---------- - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - [2] Willott et al., - "The radio luminosity function from the low-frequency 3CRR, - 6CE and 7CRS complete samples", - 2001, MNRAS, 322, 536-552. - http://adsabs.harvard.edu/abs/2001MNRAS.322..536W - - Returns - ------- - rho_mat: np.ndarray - Number density matris (joint-distribution of luminosity and - reshift). - """ - # Init - rho_mat = np.zeros((len(self.lumobin), len(self.zbin))) - # Parameters - # Refer to [2] Table. 1 model C and Willman's section 2.4 - alpha = 2.27 # spectral index - lumo_star = 10.0**26.95 # critical luminosity - rho_l0 = 10.0**(-6.196) # normalization constant - z0 = 1.91 # center redshift - z2 = 1.378 # variance - # Calculation - for i, z in enumerate(self.zbin): - # space density revolusion - fh = np.exp(-0.5 * (z - z0)**2 / z2**2) - rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** - (-alpha) * - np.exp(-lumo_star / 10.0**self.lumobin)) * - fh) - - return rho_mat - - def gen_lobe(self): - """ - Calculate lobe parameters - - References - ---------- - [1] Wilman et al., - "A semi-empirical simulation of the extragalactic radio continuum - sky for next generation radio telescopes", - 2008, MNRAS, 388, 1335-1348. - http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W - - Return - ------ - lobe: list - lobe = [lobe_maj, lobe_min, lobe_ang], which represent the major - and minor axes and the rotation angle. - """ - D0 = 1 # [Mpc] - self.lobe_maj = 0.5 * np.random.uniform(0, D0 * (1 + self.z)**(-1.4)) - self.lobe_min = self.lobe_maj * np.random.uniform(0.2, 1) - self.lobe_ang = np.random.uniform(0, np.pi) / np.pi * 180 - - # Transform to pixel - self.lobe_maj = self.param.get_angle(self.lobe_maj) - self.lobe_min = self.param.get_angle(self.lobe_min) - lobe = [self.lobe_maj, self.lobe_min, self.lobe_ang] - - return lobe - - def gen_single_ps(self): - """ - Generate single point source, and return its data as a list. - - """ - # Redshift and luminosity - self.z, self.lumo = self.get_lumo_redshift() - self.lumo_sr = self.lumo - # angular diameter distance - self.param = PixelParams(self.z) - self.dA = self.param.dA - # W/Hz/Sr to Jy - dA = self.dA * 3.0856775814671917E+22 # Mpc to meter - self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy] - # Position - x = np.random.uniform(0, 1) - self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg] - self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg] - # lobe - lobe = self.gen_lobe() - # Area - self.area = np.pi * self.lobe_maj * self.lobe_min - - ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, self.area] - ps_list.extend(lobe) - - return ps_list - - def draw_single_ps(self, freq): - """ - Designed to draw the elliptical lobes of FRI and FRII - - Prameters - --------- - nside: int and dyadic - self.ps_catalog: pandas.core.frame.DataFrame - Data of the point sources - ps_type: int - Class type of the point soruces - freq: float - frequency - """ - # Init - resolution = self.resolution / 60 # [degree] - npix = hp.nside2npix(self.nside) - hpmap = np.zeros((npix,)) - num_ps = self.ps_catalog.shape[0] - # Gen flux list - Tb_list = self.calc_Tb(freq) - ps_lobe = Tb_list[:, 1] - # Iteratively draw ps - for i in range(num_ps): - # Parameters - c_lat = self.ps_catalog['Lat (deg)'][i] # core lat [deg] - c_lon = self.ps_catalog['Lon (deg)'][i] # core lon [au.deg] - lobe_maj = self.ps_catalog['lobe_maj (rad)'][ - i] * 180 / np.pi # [deg] - lobe_min = self.ps_catalog['lobe_min (rad)'][ - i] * 180 / np.pi # [deg] - lobe_ang = self.ps_catalog['lobe_ang (deg)'][ - i] / 180 * np.pi # [rad] - # Offset to the core, refer to Willman Sec2.5.vii - offset = lobe_maj * 2 * np.random.uniform(0.2, 0.8) - # Lobe1 - lobe1_lat = (lobe_maj / 2 + offset) * np.cos(lobe_ang) - lobe1_lat = c_lat + lobe1_lat - lobe1_lon = (lobe_maj / 2 + offset) * np.sin(lobe_ang) - lobe1_lon = c_lon + lobe1_lon - # draw - # Fill with ellipse - lon, lat, gridmap = grid.make_grid_ellipse( - (lobe1_lon, lobe1_lat), (lobe_maj, lobe_min), - resolution, lobe_ang / np.pi * 180) - indices, values = grid.map_grid_to_healpix( - (lon, lat, gridmap), self.nside) - hpmap[indices] += ps_lobe[i] - - # lobe1_hotspot - lobe1_hot_lat = (lobe_maj + offset) * np.cos(lobe_ang) - lobe1_hot_lat = (c_lat + 90 + lobe1_lat) / 180 * np.pi - lobe1_hot_lon = (lobe_maj + offset) * np.sin(lobe_ang) - lobe1_hot_lon = (c_lon + lobe1_lon) / 180 * np.pi - if lobe1_hot_lat < 0: - lobe1_hot_lat += np.pi - elif lobe1_hot_lat > np.pi: - lobe1_hot_lat -= np.pi - lobe1_hot_index = hp.ang2pix( - self.nside, lobe1_hot_lat, lobe1_hot_lon) - hpmap[lobe1_hot_index] += Tb_list[i, 2] - - # Lobe2 - lobe2_lat = (lobe_maj / 2) * np.cos(lobe_ang + np.pi) - lobe2_lat = c_lat + lobe2_lat - lobe2_lon = (lobe_maj / 2) * np.sin(lobe_ang + np.pi) - lobe2_lon = c_lon + lobe2_lon - # draw - # Fill with ellipse - lon, lat, gridmap = grid.make_grid_ellipse( - (lobe2_lon, lobe2_lat), (lobe_maj, lobe_min), - resolution, lobe_ang / np.pi * 180) - indices, values = grid.map_grid_to_healpix( - (lon, lat, gridmap), self.nside) - hpmap[indices] += ps_lobe[i] - - # lobe2_hotspot - lobe2_hot_lat = (lobe_maj + offset) * np.cos(lobe_ang + np.pi) - lobe2_hot_lat = (c_lat + 90 + lobe1_lat) / 180 * np.pi - lobe2_hot_lon = (lobe_maj + offset) * np.sin(lobe_ang + np.pi) - lobe2_hot_lon = (c_lon + lobe1_lon) / 180 * np.pi - if lobe2_hot_lat < 0: - lobe2_hot_lat += np.pi - elif lobe2_hot_lat > np.pi: - lobe2_hot_lat -= np.pi - lobe2_hot_index = hp.ang2pix( - self.nside, lobe2_hot_lat, lobe2_hot_lon) - hpmap[lobe2_hot_index] += Tb_list[i, 2] - - # Core - pix_tmp = hp.ang2pix(self.nside, - (self.ps_catalog['Lat (deg)'] + 90) / - 180 * np.pi, self.ps_catalog['Lon (deg)'] / - 180 * np.pi) - ps_core = Tb_list[:, 0] - hpmap[pix_tmp] += ps_core - - return hpmap - - def draw_ps(self, freq): - """ - Read csv ps list file, and generate the healpix structure vector - with the respect frequency. - """ - # Init - num_freq = len(freq) - npix = hp.nside2npix(self.nside) - hpmaps = np.zeros((npix, num_freq)) - - # Gen ps_catalog - self.gen_catalog() - # get hpmaps - for i in range(num_freq): - hpmaps[:, i] = self.draw_single_ps(freq[i]) - - return hpmaps - - def calc_single_Tb(self, area, freq): - """ - Calculate brightness temperatur of a single ps - - Parameters - ------------ - area: float - Area of the PS - Unit: [arcsec^2] - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb:`~astropy.units.Quantity` - Average brightness temperature, e.g., `1.0*au.K` - """ - # Init - freq_ref = 151 # [MHz] - freq = freq # [MHz] - # Luminosity at 151MHz - lumo_151 = self.lumo # [Jy] - # Calc flux - # core-to-extend ratio - ang = self.lobe_ang / 180 * np.pi - x = np.random.normal(self.xmed, 0.5) - beta = np.sqrt((self.gamma**2 - 1) / self.gamma) - B_theta = 0.5 * ((1 - beta * np.cos(ang))**-2 + - (1 + beta * np.cos(ang))**-2) - ratio_obs = 10**x * B_theta - # Core - lumo_core = ratio_obs / (1 + ratio_obs) * lumo_151 - a0 = (np.log10(lumo_core) - 0.07 * - np.log10(freq_ref * 10.0E-3) + - 0.29 * np.log10(freq_ref * 10.0E-3) * - np.log10(freq_ref * 10.0E-3)) - lgs = (a0 + 0.07 * np.log10(freq * 10.0E-3) - 0.29 * - np.log10(freq * 10.0E-3) * - np.log10(freq * 10.0E-3)) - flux_core = 10**lgs # [Jy] - # core area - npix = hp.nside2npix(self.nside) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - core_area = 4 * np.pi / npix * sr_to_arcsec2 # [arcsec^2] - Tb_core = convert.Fnu_to_Tb(flux_core, core_area, freq) # [K] - # lobe - lumo_lobe = lumo_151 * (1 - ratio_obs) / (1 + ratio_obs) # [Jy] - flux_lobe = (freq / freq_ref)**(-0.75) * lumo_lobe - Tb_lobe = convert.Fnu_to_Tb(flux_lobe, area, freq) # [K] - - # hotspots - # Willman Eq. (3) - f_hs = (0.4 * (np.log10(self.lumo_sr) - 25.5) + - np.random.uniform(-0.5, 0.5)) - Tb_hotspot = Tb_lobe * (1 + f_hs) - Tb = [Tb_core, Tb_lobe, Tb_hotspot] - - return Tb - - def calc_Tb(self, freq): - """ - Calculate the surface brightness temperature of the point sources. - - Parameters - ------------ - freq: `~astropy.units.Quantity` - Frequency, e.g., `1.0*au.MHz` - - Return - ------ - Tb_list: list - Point sources brightness temperature - """ - # Tb_list - num_ps = self.ps_catalog.shape[0] - Tb_list = np.zeros((num_ps, 3)) - sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2] - # Iteratively calculate Tb - for i in range(num_ps): - ps_area = self.ps_catalog['Area (sr)'][i] # [sr] - area = ps_area * sr_to_arcsec2 - Tb_list[i, :] = self.calc_single_Tb(area, freq) - - return Tb_list |