aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/pointsources/starforming.py
diff options
context:
space:
mode:
Diffstat (limited to 'fg21sim/extragalactic/pointsources/starforming.py')
-rw-r--r--fg21sim/extragalactic/pointsources/starforming.py258
1 files changed, 0 insertions, 258 deletions
diff --git a/fg21sim/extragalactic/pointsources/starforming.py b/fg21sim/extragalactic/pointsources/starforming.py
deleted file mode 100644
index d4664bb..0000000
--- a/fg21sim/extragalactic/pointsources/starforming.py
+++ /dev/null
@@ -1,258 +0,0 @@
-# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com>
-# MIT license
-
-import numpy as np
-import healpy as hp
-
-# from .psparams import PixelParams
-from .base import BasePointSource
-from ...utils import grid
-from ...utils import convert
-from .psparams import PixelParams
-
-
-class StarForming(BasePointSource):
- """
- Generate star forming point sources, inheritate from PointSource class.
-
- Reference
- ---------
- [1] Fast cirles drawing
- https://github.com/liweitianux/fg21sim/fg21sim/utils/draw.py
- https://github.com/liweitianux/fg21sim/fg21sim/utils/grid.py
- """
-
- def __init__(self, configs):
- super().__init__(configs)
- self.columns.append('radius (rad)')
- self.nCols = len(self.columns)
- self._set_configs()
- # Number density matrix
- self.rho_mat = self.calc_number_density()
- # Cumulative distribution of z and lumo
- self.cdf_z, self.cdf_lumo = self.calc_cdf()
-
- def _set_configs(self):
- """ Load the configs and set the corresponding class attributes"""
- super()._set_configs()
- pscomp = "extragalactic/pointsources/starforming/"
- # point sources amount
- self.num_ps = self.configs.getn(pscomp+"numps")
- # prefix
- self.prefix = self.configs.getn(pscomp+"prefix")
- # redshift bin
- z_type = self.configs.getn(pscomp+"z_type")
- if z_type == 'custom':
- start = self.configs.getn(pscomp+"z_start")
- stop = self.configs.getn(pscomp+"z_stop")
- step = self.configs.getn(pscomp+"z_step")
- self.zbin = np.arange(start, stop + step, step)
- else:
- self.zbin = np.arange(0.1, 10, 0.05)
- # luminosity bin
- lumo_type = self.configs.getn(pscomp+"lumo_type")
- if lumo_type == 'custom':
- start = self.configs.getn(pscomp+"lumo_start")
- stop = self.configs.getn(pscomp+"lumo_stop")
- step = self.configs.getn(pscomp+"lumo_step")
- self.lumobin = np.arange(start, stop + step, step)
- else:
- self.lumobin = np.arange(17, 25.5, 0.1) # [W/Hz/sr]
-
- def calc_number_density(self):
- """
- Calculate number density rho(lumo,z) of FRI
-
- References
- ----------
- [1] Wilman et al.,
- "A semi-empirical simulation of the extragalactic radio continuum
- sky for next generation radio telescopes",
- 2008, MNRAS, 388, 1335-1348.
- http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W
-
- Returns
- -------
- rho_mat: np.ndarray
- Number density matris (joint-distribution of luminosity and
- reshift).
- """
- # Init
- rho_mat = np.zeros((len(self.lumobin), len(self.zbin)))
- # Parameters
- # Refer to Willman's section 2.4
- alpha = 0.7 # spectral index
- lumo_star = 10.0**22 # critical luminosity at 1400MHz
- rho_l0 = 10.0**(-7) # normalization constant
- z1 = 1.5 # cut-off redshift
- k1 = 3.1 # index of space density revolution
- # Calculation
- for i, z in enumerate(self.zbin):
- if z <= z1:
- rho_mat[:, i] = (rho_l0 * (10**self.lumobin / lumo_star) **
- (-alpha) * np.exp(-10**self.lumobin /
- lumo_star) * (1 + z)**k1)
- else:
- rho_mat[:, i] = (rho_l0 * (10**self.lumobin / lumo_star) **
- (-alpha) * np.exp(-10**self.lumobin /
- lumo_star) * (1 + z1)**k1)
-
- return rho_mat
-
- def get_radius(self):
- """
- Generate the disc diameter of normal starforming galaxies.
-
- Reference
- ---------
- [1] Wilman et al., Eq(7-9),
- "A semi-empirical simulation of the extragalactic radio continuum
- sky for next generation radio telescopes",
- 2008, MNRAS, 388, 1335-1348.
- http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W
- """
- # Willman Eq. (8)
- delta = np.random.normal(0, 0.3)
- log_M_HI = 0.44 * np.log10(self.lumo) + 0.48 + delta
- # Willman Eq. (7)
- log_D_HI = ((log_M_HI - (6.52 + np.random.uniform(-0.06, 0.06))) /
- 1.96 + np.random.uniform(-0.04, 0.04))
- # Willman Eq. (9)
- log_D = log_D_HI - 0.23 - np.log10(1 + self.z)
- self.radius = 10**log_D / 2 * 1e-3 # [Mpc]
- return self.radius
-
- def gen_single_ps(self):
- """
- Generate single point source, and return its data as a list.
- """
- # Redshift and luminosity
- self.z, self.lumo = self.get_lumo_redshift()
- # angular diameter distance
- self.param = PixelParams(self.z)
- self.dA = self.param.dA
- # Radius
- self.radius = self.param.get_angle(self.get_radius()) # [rad]
- # W/Hz/Sr to Jy
- dA = self.dA * 3.0856775814671917E+22 # Mpc to meter
- self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy]
- # Position
- x = np.random.uniform(0, 1)
- self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg]
- self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg]
- # Area
- self.area = np.pi * self.radius**2 # [sr] ?
-
- ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon,
- self.area, self.radius]
-
- return ps_list
-
- def draw_single_ps(self, freq):
- """
- Designed to draw the circular star forming and star bursting ps.
-
- Prameters
- ---------
- nside: int and dyadic
- number of sub pixel in a cell of the healpix structure
- self.ps_catalog: pandas.core.frame.DataFrame
- Data of the point sources
- freq: float
- frequency
- """
- # Init
- npix = hp.nside2npix(self.nside)
- hpmap = np.zeros((npix,))
- # Gen Tb list
- Tb_list = self.calc_Tb(freq)
- # Iteratively draw the ps
- num_ps = self.ps_catalog.shape[0]
- resolution = self.resolution / 60 # [degree]
- for i in range(num_ps):
- # grid
- ps_radius = self.ps_catalog['radius (rad)'][i] # [rad]
- ps_radius = ps_radius * 180 / np.pi # radius [deg]
- c_lat = self.ps_catalog['Lat (deg)'][i] # core_lat [deg]
- c_lon = self.ps_catalog['Lon (deg)'][i] # core_lon [deg]
- # Fill with circle
- lon, lat, gridmap = grid.make_grid_ellipse(
- (c_lon, c_lat), (2 * ps_radius, 2 * ps_radius), resolution)
- indices, values = grid.map_grid_to_healpix(
- (lon, lat, gridmap), self.nside)
- hpmap[indices] += Tb_list[i]
-
- return hpmap
-
- def draw_ps(self, freq):
- """
- Read csv ps list file, and generate the healpix structure vector
- with the respect frequency.
- """
- # Init
- num_freq = len(freq)
- npix = hp.nside2npix(self.nside)
- hpmaps = np.zeros((npix, num_freq))
-
- # Gen ps_catalog
- self.gen_catalog()
- # get hpmaps
- for i in range(num_freq):
- hpmaps[:, i] = self.draw_single_ps(freq[i])
-
- return hpmaps
-
- def calc_single_Tb(self, area, freq):
- """
- Calculate brightness temperatur of a single ps
-
- Parameters
- ------------
- area: float
- Area of the PS
- Unit: [arcsec^2]
- freq: `~astropy.units.Quantity`
- Frequency, e.g., `1.0*au.MHz`
-
- Return
- ------
- Tb:`~astropy.units.Quantity`
- Average brightness temperature, e.g., `1.0*au.K`
- """
- # Init
- freq_ref = 1400 # [MHz]
- freq = freq # [MHz]
- # Luminosity at 1400MHz
- lumo_1400 = self.lumo # [Jy]
- # Calc flux
- flux = (freq / freq_ref)**(-0.7) * lumo_1400
- # Calc brightness temperature
- Tb = convert.Fnu_to_Tb(flux, area, freq)
-
- return Tb
-
- def calc_Tb(self, freq):
- """
- Calculate the surface brightness temperature of the point sources.
-
- Parameters
- ------------
- freq: `~astropy.units.Quantity`
- Frequency, e.g., `1.0*au.MHz`
-
- Return
- ------
- Tb_list: list
- Point sources brightness temperature
- """
- # Tb_list
- num_ps = self.ps_catalog.shape[0]
- Tb_list = np.zeros((num_ps,))
- sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2 # [sr] -> [arcsec^2]
- # Iteratively calculate Tb
- for i in range(num_ps):
- ps_area = self.ps_catalog['Area (sr)'][i] # [sr]
- area = ps_area * sr_to_arcsec2
- Tb_list[i] = self.calc_single_Tb(area, freq)
-
- return Tb_list