diff options
Diffstat (limited to 'fg21sim/extragalactic')
-rw-r--r-- | fg21sim/extragalactic/clusters/psformalism.py | 205 |
1 files changed, 136 insertions, 69 deletions
diff --git a/fg21sim/extragalactic/clusters/psformalism.py b/fg21sim/extragalactic/clusters/psformalism.py index 0ed19b0..899d94e 100644 --- a/fg21sim/extragalactic/clusters/psformalism.py +++ b/fg21sim/extragalactic/clusters/psformalism.py @@ -6,7 +6,7 @@ Press-Schechter (PS) formalism First determine the number of clusters within a sky patch (i.e., sky coverage) according to the cluster distribution predicted by the PS -formalism; then sampling from the PS mass function to derive the mass +formalism; then sampling from the halo mass function to derive the mass and redshift for each cluster. """ @@ -15,10 +15,12 @@ import random import numpy as np import pandas as pd +import hmf from ...share import CONFIGS, COSMO from ...utils.interpolate import bilinear from ...utils.units import UnitConversions as AUC +from ...utils.io import write_dndlnm logger = logging.getLogger(__name__) @@ -28,106 +30,171 @@ class PSFormalism: """ Press-Schechter (PS) formalism - Simulate the clusters number and their distribution (mass and z) - within a sky patch of certain coverage. + Calculate the halo mass distribution with respect to mass and redshift, + determine the clusters number counts and generate their distribution + (mass and z) within a sky patch of certain coverage. """ def __init__(self, configs=CONFIGS): self.configs = configs self._set_configs() - self._load_data() def _set_configs(self): """ Load the required configurations and set them. """ + comp = "extragalactic/psformalism" + self.model = self.configs.getn(comp+"/model") + self.M_min = self.configs.getn(comp+"/M_min") + self.M_max = self.configs.getn(comp+"/M_max") + self.M_step = self.configs.getn(comp+"/M_step") + self.z_min = self.configs.getn(comp+"/z_min") + self.z_max = self.configs.getn(comp+"/z_max") + self.z_step = self.configs.getn(comp+"/z_step") + self.dndlnm_outfile = self.configs.get_path(comp+"/dndlnm_outfile") + comp = "extragalactic/clusters" - self.datafile = self.configs.get_path(comp+"/ps_data") self.Mmin_cluster = self.configs.getn(comp+"/mass_min") # [Msun] self.boost = self.configs.getn(comp+"/boost") + self.clobber = self.configs.getn("output/clobber") + + @property + def hmf_model(self): + return {"PS": "PS", + "SMT": "SMT", + "JENKINS": "Jenkins"}[self.model.upper()] + + def hmf_massfunc(self, z=0.0): + """ + Halo mass function as a `~hmf.MassFunction` instance. + """ + if not hasattr(self, "_hmf_massfunc"): + h = COSMO.h + cosmo = COSMO._cosmo + self._hmf_massfunc = hmf.MassFunction( + Mmin=np.log10(self.M_min*h), + Mmax=np.log10(self.M_max*h), + dlog10m=self.M_step, + hmf_model=self.hmf_model, + cosmo_model=cosmo, + n=COSMO.ns, + sigma_8=COSMO.sigma8) + logger.info("Initialized '%s' halo mass function." % + self.hmf_model) + + massfunc = self._hmf_massfunc + massfunc.update(z=z) + return massfunc + + @property + def z(self): + """ + The redshift points where to calculate the dndlnm data. + """ + return np.arange(self.z_min, self.z_max+self.z_step/2, self.z_step) + + @property + def mass(self): + """ + The mass points where to calculate the dndlnm data. + + NOTE: + The maximum mass end is exclusive, to be consistent with hmf's + mass function! + """ + return 10 ** np.arange(np.log10(self.M_min), + np.log10(self.M_max), + self.M_step) + + @property + def dndlnm(self): + """ + The calculated halo mass distributions data. + """ + if not hasattr(self, "_dndlnm"): + self._dndlnm = self.calc_dndlnm() + return self._dndlnm + + def calc_dndlnm(self): + """ + Calculate the halo mass distributions expressed in ``dndlnm``, + the differential mass distribution in terms of natural log of + masses. + Unit: [Mpc^-3] (the little "h" is folded into the values) + + NOTE + ---- + dndlnm = d n(M,z) / d ln(M); [Mpc^-3] + describes the number of halos per comoving volume (Mpc^3) at + redshift z per unit logarithmic mass interval at mass M. + """ + logger.info("Calculating dndlnm data ...") + dndlnm = [] + h = COSMO.h + for z_ in self.z: + massfunc = self.hmf_massfunc(z_) + dndlnm.append(massfunc.dndlnm * h**3) + self._dndlnm = np.array(dndlnm) + logger.info("Calculated dndlnm within redshift: %.1f - %.1f" % + (self.z_min, self.z_max)) + return self._dndlnm + + def write(self, outfile=None): + """ + Write the calculate dndlnm data into file as NumPy ".npz" format. + """ + if outfile is None: + outfile = self.dndlnm_outfile + write_dndlnm(outfile, dndlnm=self.dndlnm, z=self.z, mass=self.mass, + clobber=self.clobber) + logger.info("Wrote dndlnm data into file: %s" % outfile) + @property def Mmin_halo(self): return self.Mmin_cluster * COSMO.darkmatter_fraction - def _load_data(self, filepath=None): - """ - Load dndM data and reformat into a 2D density grid together with - redshifts and masses vectors. - - Data File Description - --------------------- - z1 mass1 density1 - z1 mass2 density2 - z1 .. density3 - z2 mass1 density4 - z2 mass2 density5 - z2 .. density6 - ... - - where, - * Redshifts: 0.0 -> 3.02, even-spacing, step 0.02 - * Mass: unit 1e12 -> 9.12e15 [Msun], log-even (dark matter) - * Density: [number]/dVc/dM - with, - - dVc: differential comvoing volume, [Mpc^3]/[sr]/[unit redshift] - """ - if filepath is None: - filepath = self.datafile - data = np.loadtxt(filepath) - redshifts = data[:, 0] - masses = data[:, 1] - densities = data[:, 2] - - redshifts = np.array(list(set(redshifts))) - redshifts.sort() - masses = np.array(list(set(masses))) - masses.sort() - densities = densities.reshape((len(redshifts), len(masses))) - - logger.info("Loaded PS data from file: %s" % filepath) - logger.info("Number of redshift bins: %d" % len(redshifts)) - logger.info("Number of mass bins: %d" % len(masses)) - self.redshifts = redshifts - self.masses = masses - self.densities = densities - @staticmethod def delta(x, logeven=False): """ Calculate the delta values for each element of a vector, assuming they are evenly or log-evenly distributed, - with extrapolating. + by extrapolating. """ x = np.asarray(x) if logeven: - x = np.log(x) - step = x[1] - x[0] - x1 = np.concatenate([[x[0]-step], x[:-1]]) - x2 = np.concatenate([x[1:], [x[-1]+step]]) - dx = (x2 - x1) * 0.5 - if logeven: - dx = np.exp(dx) + ratio = x[1] / x[0] + x_left = x[0] / ratio + x_right = x[-1] * ratio + else: + step = x[1] - x[0] + x_left = x[0] - step + x_right = x[-1] + step + x2 = np.concatenate([[x_left], x, [x_right]]) + dx = (x2[2:] - x2[:-2]) / 2 return dx @property def number_grid(self): """ - Calculate the number distribution w.r.t. redshift, mass, and - unit coverage [sr] from the density distribution. + The halo number per unit solid angle [sr] distribution w.r.t. + mass and redshift. + Unit: [/sr] """ - dz = self.delta(self.redshifts) - dM = self.delta(self.masses) - dMgrip, dzgrip = np.meshgrid(dM, dz) - Mgrip, zgrip = np.meshgrid(self.masses, self.redshifts) - dVcgrip = COSMO.dVc(zgrip) # [Mpc^3/sr] - numgrid = self.densities * dVcgrip * dzgrip * dMgrip - return numgrid + if not hasattr(self, "_number_grid"): + dz = self.delta(self.z) + dM = self.delta(self.mass, logeven=True) + dlnM = dM / self.mass + dlnMgrid, dzgrid = np.meshgrid(dlnM, dz) + __, zgrid = np.meshgrid(self.mass, self.z) + dVcgrid = COSMO.dVc(zgrid) # [Mpc^3/sr] + self._number_grid = self.dndlnm * dlnMgrid * (dVcgrid*dzgrid) + + return self._number_grid def calc_cluster_counts(self, coverage): """ Calculate the total number of clusters (>= minimum mass) within - the FoV coverage according to the number density distribution - (e.g., predicted by the Press-Schechter mass function) + the FoV coverage according to the halo number density distribution. Parameters ---------- @@ -145,10 +212,10 @@ class PSFormalism: ---------- counts """ - logger.info("Determine the total number of clusters within " + logger.info("Calculating the total number of clusters within " "sky patch of coverage %.1f [deg^2]" % coverage) coverage *= AUC.deg2rad**2 # [deg^2] -> [rad^2] = [sr] - midx = (self.masses >= self.Mmin_halo) + midx = (self.mass >= self.Mmin_halo) numgrid = self.number_grid counts = np.sum(numgrid[:, midx]) * coverage counts *= self.boost # number boost factor @@ -159,7 +226,7 @@ class PSFormalism: def sample_z_m(self, counts=None): """ Randomly generate the requested number of pairs of (z, M) following - the specified number distribution. + the halo number distribution. Parameters ---------- |