diff options
Diffstat (limited to 'fg21sim/extragalactic')
-rw-r--r-- | fg21sim/extragalactic/clusters/main.py | 2 | ||||
-rw-r--r-- | fg21sim/extragalactic/clusters/psformalism.py | 90 |
2 files changed, 54 insertions, 38 deletions
diff --git a/fg21sim/extragalactic/clusters/main.py b/fg21sim/extragalactic/clusters/main.py index 3d71593..a5c2497 100644 --- a/fg21sim/extragalactic/clusters/main.py +++ b/fg21sim/extragalactic/clusters/main.py @@ -104,6 +104,8 @@ class GalaxyClusters: """ logger.info("Simulating the clusters (z, mass) catalog ...") psform = PSFormalism(configs=self.configs) + psform.calc_dndlnm() + psform.write() counts = psform.calc_cluster_counts(coverage=self.sky.area) self.catalog, self.catalog_comment = psform.sample_z_m(counts) logger.info("Simulated cluster catalog of counts %d." % counts) diff --git a/fg21sim/extragalactic/clusters/psformalism.py b/fg21sim/extragalactic/clusters/psformalism.py index 899d94e..da2796d 100644 --- a/fg21sim/extragalactic/clusters/psformalism.py +++ b/fg21sim/extragalactic/clusters/psformalism.py @@ -18,7 +18,6 @@ import pandas as pd import hmf from ...share import CONFIGS, COSMO -from ...utils.interpolate import bilinear from ...utils.units import UnitConversions as AUC from ...utils.io import write_dndlnm @@ -228,6 +227,19 @@ class PSFormalism: Randomly generate the requested number of pairs of (z, M) following the halo number distribution. + NOTE + ---- + First derive the cluster (M>=Mmin) number distribution w.r.t. + redshifts, from which the redshift for each cluster is sampled + using the acceptance-rejection algorithm. Then for each cluster + at redshift z, the corresponding halo mass distribution is used + to generate the cluster mass using the same algorithm. + + NOTE + ---- + Sampling masses in logarithmic scale improve the speed very + significantly (~30x)! + Parameters ---------- counts : int, optional @@ -250,52 +262,54 @@ class PSFormalism: counts = self.counts logger.info("Sampling (z, mass) pairs for %d clusters ..." % counts) - redshifts = self.redshifts - masses = self.masses - zmin = redshifts.min() - zmax = redshifts.max() - Mmax = masses.max() - midx = (masses >= self.Mmin_halo) - numgrid = self.number_grid - numgrid2 = numgrid[:, midx] - NM = numgrid2.max() + z = self.z + zmin = z.min() + zmax = z.max() + log10mass = np.log10(self.mass) + log10Mmin = np.log10(self.Mmin_halo) + log10Mmax = log10mass.max() + midx = (log10mass >= log10Mmin) + log10mass = log10mass[midx] + Ngrid = self.number_grid[:, midx] + + logger.info("Sampling redshifts ...") z_list = [] - M_list = [] + zi_list = [] + Nzdist = Ngrid.sum(axis=1) + NMax = Nzdist.max() i = 0 while i < counts: - z = random.uniform(zmin, zmax) - M = random.uniform(self.Mmin_halo, Mmax) + zc = random.uniform(zmin, zmax) + zi = (z < zc).sum() + Nzc = Nzdist[zi] r = random.random() - zi1 = (self.redshifts < z).sum() - zi2 = zi1 - 1 - if zi2 < 0: - zi2 += 1 - zi1 += 1 - Mi1 = (self.masses < M).sum() - Mi2 = Mi1 - 1 - if Mi2 < 0: - Mi2 += 1 - Mi1 += 1 - N = bilinear( - z, np.log(M), - p11=(redshifts[zi1], np.log(masses[Mi1]), numgrid[zi1, Mi1]), - p12=(redshifts[zi1], np.log(masses[Mi2]), numgrid[zi1, Mi2]), - p21=(redshifts[zi2], np.log(masses[Mi1]), numgrid[zi2, Mi1]), - p22=(redshifts[zi2], np.log(masses[Mi2]), numgrid[zi2, Mi2])) - if r < N/NM: - z_list.append(z) - M_list.append(M) + if r < Nzc/NMax: + z_list.append(zc) + zi_list.append(zi) i += 1 - if i % 100 == 0: - logger.info("[%d/%d] %.1f%% ..." % - (i, counts, 100*i/counts)) - logger.info("Sampled %d pairs of (z, mass) for each cluster" % counts) - df = pd.DataFrame(np.column_stack([z_list, M_list]), + logger.info("Sampling masses ...") + mass_list = [] + NMax_list = Ngrid.max(axis=1) + i = 0 + while i < counts: + zi = zi_list[i] + NMax = NMax_list[zi] + Nmassdist = Ngrid[zi, :] + log10Mc = random.uniform(log10Mmin, log10Mmax) + Mi = (log10mass < log10Mc).sum() + NMc = Nmassdist[Mi] + r = random.random() + if r < NMc/NMax: + mass_list.append(10**log10Mc) + i += 1 + + logger.info("Sampled %d pairs of (z, mass) for each cluster" % counts) + df = pd.DataFrame(np.column_stack([z_list, mass_list]), columns=["z", "mass"]) df["mass"] /= COSMO.darkmatter_fraction comment = [ - "dndM data: %s" % self.datafile, + "halo mass function model: %s" % self.hmf_model, "cluster minimum mass: %.2e [Msun]" % self.Mmin_cluster, "dark matter fraction: %.2f" % COSMO.darkmatter_fraction, "cluster counts: %d" % counts, |