aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic
diff options
context:
space:
mode:
Diffstat (limited to 'fg21sim/extragalactic')
-rw-r--r--fg21sim/extragalactic/clusters/helper.py26
1 files changed, 26 insertions, 0 deletions
diff --git a/fg21sim/extragalactic/clusters/helper.py b/fg21sim/extragalactic/clusters/helper.py
index c4b3d72..18e7133 100644
--- a/fg21sim/extragalactic/clusters/helper.py
+++ b/fg21sim/extragalactic/clusters/helper.py
@@ -30,6 +30,10 @@ References
Lokas & Mamon 2001, MNRAS, 321, 155
http://adsabs.harvard.edu/abs/2001MNRAS.321..155L
+.. [miniati2015]
+ Miniati & Beresnyak 2015, Nature, 523, 59
+ http://adsabs.harvard.edu/abs/2015Natur.523...59M
+
.. [murgia2009]
Murgia et al. 2009, A&A, 499, 679
http://adsabs.harvard.edu/abs/2009A%26A...499..679M
@@ -373,6 +377,28 @@ def magnetic_field(
return B
+def plasma_beta(
+ mass,
+ z=0.0,
+ eta_b=CONFIGS.getn("extragalactic/clusters/eta_b"),
+ kT_out=CONFIGS.getn("extragalactic/clusters/kT_out"),
+ ):
+ """
+ Calculate the β value of the ICM, which is defined as:
+ β ≡ P_gas / u_B
+ where "P_gas" is the gas pressue: P_gas = n_th * kT;
+ "u_B" is the magnetic field energy density: u_B = B² / 8π .
+
+ Reference: Ref.[miniati2015],Eq.(2)
+ """
+ n_th = density_number_thermal(mass, z) # [cm^-3]
+ kT = kT_cluster(mass, z, kT_out=kT_out) * AUC.keV2erg # [erg]
+ P = n_th * kT
+ B = magnetic_field(mass, z, eta_b=eta_b, kT_out=kT_out) * 1e-6 # [G]
+ beta = 8*np.pi * P / B**2
+ return beta
+
+
def speed_sound(kT):
"""
The adiabatic sound speed in cluster ICM.