From 5ffe87e56aec584763825f39b7bbc94eb2263262 Mon Sep 17 00:00:00 2001 From: Aaron LI Date: Thu, 8 Nov 2018 16:50:31 +0800 Subject: docs/guide: Update to refer to the right config.spec Delete the old outdated one. --- docs/fg21sim.conf.spec | 495 ------------------------------------------------- docs/guide.rst | 3 +- 2 files changed, 2 insertions(+), 496 deletions(-) delete mode 100644 docs/fg21sim.conf.spec (limited to 'docs') diff --git a/docs/fg21sim.conf.spec b/docs/fg21sim.conf.spec deleted file mode 100644 index 9477dd7..0000000 --- a/docs/fg21sim.conf.spec +++ /dev/null @@ -1,495 +0,0 @@ -# Configurations for "fg21sim" -# -*- mode: conf -*- -# -# Syntax: `ConfigObj`, https://github.com/DiffSK/configobj -# - -# Foreground components to be simulated -[foregrounds] -# Diffuse Galactic synchrotron emission (unpolarized) -galactic/synchrotron = boolean(default=False) - -# Diffuse Galactic free-free emission -galactic/freefree = boolean(default=False) - -# Galactic supernova remnants emission -galactic/snr = boolean(default=False) - -# Extragalactic clusters of galaxies emission -extragalactic/clusters = boolean(default=False) - -# Emission from multiple types of extragalactic point sources -# NOTE: This component is not well integrated and tested at the moment -extragalactic/pointsources = boolean(default=False) - - -# Simulation sky/region configurations -[sky] -# Type of the input/output simulation sky -# + patch: -# Input/output sky template is only a (square) patch of the sky. -# The simulated output maps have the same coverage/field as the -# input template, as well as the coordinate projection. -# + healpix: -# Input/output sky template covers (almost) all sky, and stored -# in HEALPix format. The simulated output maps will also be -# all-sky using the HEALPix projection. -type = option("patch", "healpix", default="patch") - - # Configurations for input/output sky patch - [[patch]] - # The (R.A., Dec.) coordinate of the sky patch center - # Unit: [deg] - # (MWA EoR0 field center: (0, -27)) - xcenter = float(default=0.0, min=0.0, max=360.0) - ycenter = float(default=-27.0, min=-90.0, max=90.0) - - # The image dimensions (i.e., number of pixels) of the sky patch, - # along the X (R.A./longitude) and Y (Dec./latitude) axes. - # Default: 1800x1800 => 10x10 [deg^2] (20 arcsec/pixel) - xsize = integer(default=1800, min=1) - ysize = integer(default=1800, min=1) - - # Pixel size [arcsec] - pixelsize = float(default=20.0, min=0.0) - - # Configurations for input/output HEALPix sky - [[healpix]] - # HEALPix Nside value, i.e., pixel resolution - nside = integer(default=1024, min=128) - - -# Frequencies specification of the simulation products -[frequency] -# How to specify the frequencies -# + custom: -# directly specify the frequency values using the "frequencies" config -# + calc: -# calculate the frequency values by "start", "stop", and "step" -type = option("custom", "calc", default="custom") - -# The frequency values to be simulated if above "type" is "custom". -# Unit: [MHz] -frequencies = float_list(default=list()) - -# Parameters to calculate the frequencies -# NOTE: "start" and "stop" frequencies are both inclusive. -# Unit: [MHz] -start = float(default=None, min=0.0) -stop = float(default=None, min=0.0) -step = float(default=None, min=0.0) - - -# Configuration for output products -[output] -# Filename pattern for the output products, which will be finally -# formatted using `str.format()`. -filename_pattern = string(default="{prefix}_{frequency:06.2f}.fits") - -# Use single-precision float instead of double (to save spaces) -float32 = boolean(default=True) - -# Whether to calculate the checksum for the output FITS file? -# NOTE: May cost significantly more time on writing FITS file. -checksum = boolean(default=False) - -# Whether to overwrite existing files (e.g., maps, catalogs, manifest, ...) -clobber = boolean(default=False) - -# Filename of the simulation products manifest (JSON format), which -# records all output products together with their sizes and MD5 hashes. -# Do not create such a manifest if this option is not specified. -manifest = string(default=None) - - -# Cosmological parameters -# References: Komatsu et al. 2011, ApJS, 192, 18; Tab.(1) -[cosmology] -# Hubble constant at z=0; [km/s/Mpc] -H0 = float(default=71.0, min=0.0) -# Density of non-relativistic matter in units of the critical density at z=0 -OmegaM0 = float(default=0.27, min=0.0, max=1.0) -# Density of the baryon at present day -Omegab0 = float(default=0.046, min=0.0, max=1.0) -# Present-day CMB temperature; [K] -Tcmb0 = float(default=2.725) -# Present-day rms density fluctuations on a scale of 8 h^-1 [Mpc] -sigma8 = float(default=0.81, min=0.0) -# Scalar spectral index -ns = float(default=0.96, min=0.0) - - -# Configurations for initialization/reconfiguration of the `logging` module -[logging] -# debug: Detailed information, typically of interest only when diagnosing -# problems. -# info: Confirmation that things are working as expected. -# warning: An indication that something unexpected happended, or indicative -# of some problem in the near future (e.g., "disk space low"). -# The software is still working as expected. -# error: Due to a more serious problem, the software has not been able to -# perform some function. -# critical: A serious error, indicating that the program itself may be unable -# to continue running. -level = option("debug", "info", "warning", "error", "critical", default="info") - -# Set the format of displayed messages -format = string(default="%(asctime)s [%(levelname)s] <%(name)s:%(lineno)d> %(message)s") - -# Set the date/time format in messages -datefmt = string(default="%H:%M:%S") - -# Set the logging filename (will create a `FileHandler`) -# If set to "" (empty string), then the `FileHandler` will be disabled. -filename = string(default="") - -# Set the stream used to initialize the `StreamHandler` -# If set to "" (empty string), then the `StreamHandler` will be disabled. -stream = option("stderr", "stdout", "", default="stderr") - - -# Options corresponding the Galactic emission components, which currently -# includes the following components: -# - synchrotron -# - freefree -# - snr - -[galactic] - - # Synchrotron emission component (unpolarized) - [[synchrotron]] - # The template map for the simulation, e.g., Haslam 408 MHz survey. - # Unit: [K] (Kelvin) - template = string(default=None) - # The frequency of the template map. - # Unit: [MHz] - template_freq = float(default=None, min=0.0) - - # Spectral index map - indexmap = string(default=None) - - # Whether add fluctuations on the small scales according the angular - # power spectrum prediction? - add_smallscales = boolean(default=False) - # Range of multipole moments (l) of the angular power spectrum. - # The power spectrum will be cut off to a constant for multipole l < lmin. - # NOTE: Update the ``lmax`` accordingly w.r.t. ``sky/healpix/nside``. - # Generally, lmax = 3 * nside - 1 - lmin = integer(min=0, default=10) - lmax = integer(min=1, default=3071) - - # Filename prefix for this component - prefix = string(default="gsync") - # Output directory to save the simulated results - output_dir = string(default=None) - - # Free-free bremsstrahlung emission component - [[freefree]] - # The Hα map from which to derive the free-free emission - # Unit: [Rayleigh] - halphamap = string(default=None) - - # The 100-μm dust map used to correct Hα dust absorption - # Unit: [MJy/sr] - dustmap = string(default=None) - - # Effective dust fraction in the LoS actually absorbing Halpha - dust_fraction = float(default=0.33, min=0.1, max=1.0) - - # Halpha absorption threshold: - # When the dust absorption goes rather large, the true Halpha - # absorption can not well determined. This configuration sets the - # threshold below which the dust absorption can be well determined, - # while the sky regions with higher absorption are masked out due - # to unreliable absorption correction. - # Unit: [mag] - halpha_abs_th = float(default=1.0) - - # The electron temperature assumed for the ionized interstellar medium - # that generating H{\alpha} emission. - # Unit: [K] - electron_temperature = float(default=7000.0, min=1000) - - # Filename prefix for this component - prefix = string(default="gfree") - # Output directory to save the simulated results - output_dir = string(default=None) - - # Supernova remnants emission - [[snr]] - # The Galactic SNRs catalog data (CSV file) - catalog = string(default=None) - # Output the effective/inuse SNRs catalog data (CSV file) - catalog_outfile = string(default=None) - - # Resolution for simulating each SNR template, which are finally - # mapped to the all-sky HEALPix map if used. - # Unit: [arcsec] - resolution = float(default=30.0, min=5.0) - - # Filename prefix for this component - prefix = string(default="gsnr") - # Output directory to save the simulated results - output_dir = string(default=None) - - -# Options corresponding the extragalactic emission components, which -# currently includes the following components: -# - clusters: halos -# - pointsources - -[extragalactic] - # - # Press-Schechter formalism to determine the cluster distributions - # with respect to mass and redshift, from which to further determine - # the total number of clusters within a sky patch and to sample the - # masses and redshifts for each cluster. - # - [[psformalism]] - # The model of the fitting function for halo/cluster mass distribution - # For all models and more details: - # https://hmf.readthedocs.io/en/latest/_autosummary/hmf.fitting_functions.html - model = option("smt", "jenkins", "ps", default="ps") - - # The minimum (inclusive) and maximum (exclusive!) cluster mass - # within which to calculate the halo mass distribution. - # Unit: [Msun] - M_min = float(default=1e12, min=1e10, max=1e14) - M_max = float(default=1e16, min=1e14, max=1e18) - # The logarithmic (base 10) step size for the halo masses; therefore - # the number of intervals is: (log10(M_max) - log10(M_min)) / M_step - M_step = float(default=0.01, min=0.001, max=0.1) - - # The minimum and maximum redshift within which to calculate the - # halo mass distribution; as well as the step size. - z_min = float(default=0.01, min=0.001, max=1.0) - z_max = float(default=4.0, min=1.0, max=100) - z_step = float(default=0.01, min=0.001, max=1.0) - - # Output file (NumPy ".npz" format) to save the calculated halo mass - # distributions at every redshift. - # - # This file packs the following 3 NumPy arrays: - # * ``z``: - # Redshifts where the halo mass distribution is calculated. - # * ``mass``: - # (Logarithmic-distributed) masses points. - # Unit: [Msun] (the little "h" is folded into the values) - # * ``dndlnm``: - # Shape: (len(z), len(mass)) - # Differential mass function in terms of natural log of M. - # Unit: [Mpc^-3] (the little "h" is folded into the values) - dndlnm_outfile = string(default=None) - - - # - # Extended emissions from the clusters of galaxies - # The configurations in this ``[[clusters]]`` section may also be - # used by the following ``[[halos]]`` section. - # - [[clusters]] - # Output CSV file of the cluster catalog containing the simulated - # mass, redshift, position, shape, recent merger info, etc. - catalog_outfile = string(default=None) - - # Whether to dump the raw data of the simulated cluster catalog in - # Python native pickle format (i.e., ".pkl") to a file with the same - # basename as the above ``catalog_outfile``? - # The dumped data can be easily loaded back for reuse. - dump_catalog_data = boolean(default=True) - - # Whether to directly use the (previously simulated) catalog data as - # specified by the above "catalog_outfile" and ``dump_catalog_data`` - # options? - # NOTE: - # By using an existing catalog, the steps to derive these data are - # simply skipped. - # Due to the small number density of the galaxy clusters, the simulated - # results within a small patch of sky (e.g., 100 [deg^2]) show - # significant fluctuations (several or even several tens of times - # of differences between simulations). Therefore, one may run many - # tests and only create images at some frequencies necessary for - # testing, then select the satisfying one to continue the simulation - # to generate images at all frequencies. - use_dump_catalog_data = boolean(default=False) - - # Output CSV file of the halos catalog containing the calculated - # properties of the simulated halos. - halos_catalog_outfile = string(default=None) - - # Whether to dump the whole data of the simulated halos in Python - # native pickle format (i.e., ".pkl") to a file with the same basename - # as the above ``halos_catalog_outfile``? - # The dumped data also includes the derived electron spectrum for - # each halo, therefore this file can be reloaded back in order to - # calculate the emissions at other frequencies. - dump_halos_data = boolean(default=True) - - # Whether to directly use the (previously dumped) halos data (".pkl") - # as specified by the above ``halos_catalog_outfile`` and - # ``dump_halos_data`` options? - # In this way, the radio emissions at additional frequencies can be - # easily (and consistently) calculated. - use_dump_halos_data = boolean(default=False) - - # The minimum mass for clusters when to determine the galaxy clusters - # total counts and their distributions. - # Unit: [Msun] - mass_min = float(default=1e14, min=1e13) - - # Boost the number of expected cluster number within the sky coverage - # by the specified times. - # WARNING: for testing usage. - boost = float(default=1.0, min=0.1, max=1e4) - - # Minimal elongated fraction for creating the images of radio halos - # The ``felong`` is defined as ``felong = b/a``, similar to the Hubble - # classification for the elliptical galaxies. ``felong_min = 1.0`` - # means no elongation, and ``felong_min = 0.6`` is a good choice as - # the observed radio halos are generally regular. - felong_min = float(default=1.0, min=0.1, max=1.0) - - # Number of most powerful halos to be dropped out. - halo_dropout = integer(default=0, min=0) - - # Minimum mass change of the main cluster to be regarded as a merger - # event instead of an accretion event. - # Unit: [Msun] - merger_mass_min = float(default=1e13, min=1e11, max=1e14) - - # The trace back time when to stop tracing the merging history of - # clusters. ~2-3 Gyr should be enough since the turbulence acceleration - # effective time ~<1 Gyr and the halo lifetime is also short compared - # to mergers. - # Unit: [Gyr] - time_traceback = float(default=3.0, min=1.0, max=5.0) - - # The fraction of the magnetic field energy density w.r.t. the ICM - # thermal energy density, which is used to determine the mean magnetic - # field strength within the ICM and is also assumed to be uniform. - # * ~< 0.4% (Ref: Pfrommer & Ensslin 2004, MNRAS) - # * ~0.3%-1% (Ref: Bohringer et al. 2016, A&A) - eta_b = float(default=0.001, min=1e-5, max=0.1) - - # The temperature of the outer gas surrounding the cluster. Accretion - # shocks form near the cluster virial radius during the cluster formation, - # which can heat the cluster ICM to have a higher temperature than the - # virial temperature: - # kT_icm ~ kT_vir + 1.5 * kT_out, - # with: kT_out ~ 0.5 [keV] - # Reference: Fujita et al. 2003, ApJ, 584, 190; Eq.(49) - # Unit: [keV] - kT_out = float(default=0.0, min=0.0) - - # Filename prefix for this component - prefix = string(default="cluster") - # Output directory to save the simulated results - output_dir = string(default=None) - - - # - # Giant radio halos - # - [[halos]] - # A custom parameter to tune the turbulent acceleration efficiency. - # NOTE: The smaller this parameter, the shorter the acceleration - # timescale, therefore more efficient acceleration. - f_acc = float(default=1.0, min=0.1, max=10) - - # The turbulence is generally injected at the cluster center during - # a merger. This option parameterize the turbulence injection scale - # to be a fraction of the virial radius of the cluster, which is also - # used to determine the radio halo size. - f_lturb = float(default=0.33, min=0.1, max=1.0) - - # An efficiency factor describing the effectiveness of plasma - # instabilities (e.g., due to spatial or temporal intermittency). - zeta_ins = float(default=0.1, min=0.1, max=1.0) - - # The fraction of merger energy transferred into the turbulence. - eta_turb = float(default=0.1, min=0.1, max=0.5) - - # The fraction of the thermal energy injected into the cosmic-ray - # electrons during the cluster life time. - eta_e = float(default=0.003, min=0.001, max=0.1) - - # The ratio of cosmic ray (including protons and electrons) energy - # density (i.e., pressure) to the thermal energy density. - # NOTE: Fermi-LAT has placed an upper limit of ~1.25%-1.4% - # (Ackermann et al. 2014, ApJ, 787, 18) - # NOTE: The energy ratio of cosmic-ray electrons to protons K_ep ~0.01 - # for our Galaxy (Pinzke et al. 2017, MNRAS, 465, 4800) - x_cr = float(default=0.015, min=0.001, max=0.1) - - # Electron injection, which is assumed to have a constant injection - # rate and a power-law spectrum. - injection_index = float(default=2.3, min=2.1, max=3.0) - - # Minimum and maximum Lorentz factor (i.e., energy) of the relativistic - # electron spectrum. - gamma_min = float(default=1) - gamma_max = float(default=1e5) - # Number of cells on the logarithmic momentum grid used to solve the - # Fokker-Planck equation. - gamma_np = integer(default=200) - - # Number of cells used as the buffer regions near both the lower - # and upper boundaries, within which the values will be replaced by - # extrapolating from the inner-region data, in order to avoid the - # unphysical particle pile-ups. - # It is suggested to be about 5%-10% of the above ``gamma_np``. - # NOTE: * set to 0 to disable boundary fixes; - # * otherwise, set to a number >= 2. - buffer_np = integer(default=10, min=0) - - # Time step for solving the Fokker-Planck equation - # Unit: [Gyr] - time_step = float(default=0.02, min=1e-4, max=0.1) - - # How long the period before the merger begins, which is used to derive - # an approximately steady initial electron spectrum. During this period, - # the acceleration is turned off and only leaves energy loss mechanisms. - # Unit: [Gyr] - time_init = float(default=1.0, min=0) - - - # - # Extragalactic point sources - # - [[pointsources]] - # Output directory to save the simulated catalog - output_dir = string(default="PS_tables") - # PS components to be simulated - pscomponents = string_list(default=list()) - # Resolution [arcmin] - resolution = float(default=0.6, min=0.0) - - [[[starforming]]] - # Number of samples - numps = integer(default=1000) - # Prefix - prefix = string(default="SF") - - [[[starbursting]]] - # Number of samples - numps = integer(default=1000) - # Prefix - prefix = string(default="SB") - - [[[radioquiet]]] - # Number of samples - numps = integer(default=1000) - # Prefix - prefix = string(default="RQ") - - [[[FRI]]] - # Number of samples - numps = integer(default=1000) - # Prefix - prefix = string(default="FRI") - - [[[FRII]]] - # Number of samples - numps = integer(default=1000) - # Prefix - prefix = string(default="FRII") diff --git a/docs/guide.rst b/docs/guide.rst index d1a4d5d..ff5e4ab 100644 --- a/docs/guide.rst +++ b/docs/guide.rst @@ -30,7 +30,8 @@ There are two types of configuration options: *required* (which require the user to explicitly provide the values) and *optional* (which already have sensible defaults, however, the user can also override them). -Please refer to the `configuration specification file `_ +Please refer to the +`configuration specification file <../fg21sim/configs/config.spec>`_ for more information on the available options. Also there is a brief `test configuration file `_ which may be useful to test whether this package is correctly installed -- cgit v1.2.2