From 7b8215c64581af20249f092287e2152315e3b566 Mon Sep 17 00:00:00 2001 From: Aaron LI Date: Fri, 21 Jul 2017 10:40:37 +0800 Subject: Use the global "cosmo" instance for simplification Signed-off-by: Aaron LI --- fg21sim/extragalactic/clusters/halo.py | 46 +++++++++++++++------------------- 1 file changed, 20 insertions(+), 26 deletions(-) (limited to 'fg21sim/extragalactic/clusters/halo.py') diff --git a/fg21sim/extragalactic/clusters/halo.py b/fg21sim/extragalactic/clusters/halo.py index d7f351f..c78c2c3 100644 --- a/fg21sim/extragalactic/clusters/halo.py +++ b/fg21sim/extragalactic/clusters/halo.py @@ -26,7 +26,7 @@ import scipy.optimize from .formation import ClusterFormation from .solver import FokkerPlanckSolver -from ...utils.cosmology import Cosmology +from ...utils import cosmo from ...utils.units import (Units as AU, UnitConversions as AUC, Constants as AC) @@ -35,7 +35,7 @@ from ...utils.units import (Units as AU, logger = logging.getLogger(__name__) -class HaloSingle: +class RadioHalo: """ Simulate a single (giant) radio halos following the "statistical magneto-turbulent model" proposed by Cassano & Brunetti (2005). @@ -63,8 +63,6 @@ class HaloSingle: mec : float Unit for electron momentum (p): mec = m_e * c, p = gamma * mec, therefore value of p is the Lorentz factor. - cosmo : `~Cosmology` - Adopted cosmological model with custom utility functions. mtree : `~MergerTree` Merging history of this cluster. """ @@ -99,10 +97,6 @@ class HaloSingle: self.buffer_np = self.configs.getn(comp+"/buffer_np") self.time_step = self.configs.getn(comp+"/time_step") self.injection_index = self.configs.getn(comp+"/injection_index") - # Cosmology model - self.H0 = self.configs.getn("cosmology/H0") - self.OmegaM0 = self.configs.getn("cosmology/OmegaM0") - self.cosmo = Cosmology(H0=self.H0, Om0=self.OmegaM0) logger.info("Loaded and set up configurations") @property @@ -185,13 +179,13 @@ class HaloSingle: Unit: [cm^-3 mec^-1] """ if zbegin is None: - tstart = self.cosmo.age(self.zmax) + tstart = cosmo.age(self.zmax) else: - tstart = self.cosmo.age(zbegin) + tstart = cosmo.age(zbegin) if zend is None: - tstop = self.cosmo.age(self.z0) + tstop = cosmo.age(self.z0) else: - tstop = self.cosmo.age(zend) + tstop = cosmo.age(zend) fpsolver = FokkerPlanckSolver( xmin=self.pmin, xmax=self.pmax, @@ -252,8 +246,8 @@ class HaloSingle: Rvir : float Virial radius (unit: kpc) of the cluster at given redshift """ - Dc = self.cosmo.overdensity_virial(z) - rho = self.cosmo.rho_crit(z) # [g/cm^3] + Dc = cosmo.overdensity_virial(z) + rho = cosmo.rho_crit(z) # [g/cm^3] R_vir = (3*mass*AUC.Msun2g / (4*np.pi * Dc * rho))**(1/3) # [cm] R_vir *= AUC.cm2kpc # [kpc] return R_vir @@ -316,7 +310,7 @@ class HaloSingle: http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C Eq.(12) """ - f_baryon = self.cosmo.Ob0 / self.cosmo.Om0 + f_baryon = cosmo.Ob0 / cosmo.Om0 Rv = self._radius_virial(mass, z) * AUC.kpc2cm # [cm] V = (4*np.pi / 3) * Rv**3 # [cm^3] rho = f_baryon * mass*AUC.Msun2g / V # [g/cm^3] @@ -346,7 +340,7 @@ class HaloSingle: http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C Eq.(13) """ - f_baryon = self.cosmo.Ob0 / self.cosmo.Om0 + f_baryon = cosmo.Ob0 / cosmo.Om0 M_ICM = mass * f_baryon * AUC.Msun2g # [g] r *= AUC.kpc2cm # [cm] Rv = self._radius_virial(mass, z) * AUC.kpc2cm # [cm] @@ -477,12 +471,12 @@ class HaloSingle: time : float Elapsing time (unit: Gyr) """ - t_begin = self.cosmo.age(z_begin) # [Gyr] + t_begin = cosmo.age(z_begin) # [Gyr] t_end = t_begin + time - if t_end >= self.cosmo.age(0): + if t_end >= cosmo.age(0): z_end = 0.0 else: - z_end = self.cosmo.redshift(t_end) + z_end = cosmo.redshift(t_end) return z_end @property @@ -542,7 +536,7 @@ class HaloSingle: """ zgrid, chigrid = self._chi_data # XXX: force a minimal value instead of zero or too small - chi_min = 1 / (10 * self.cosmo.age0) + chi_min = 1 / (10 * cosmo.age0) try: zi = np.where(z < zgrid)[0][0] @@ -677,7 +671,7 @@ class HaloSingle: """ if not hasattr(self, "_electron_injection_rate"): e_th = self.e_thermal # [erg/cm^3] - age = self.cosmo.age(self.z0) + age = cosmo.age(self.z0) term1 = (self.injection_index-2) * self.eta_e term2 = e_th / (self.pmin * self.mec * AC.c) # [cm^-3] term3 = 1.0 / (age * self.pmin) # [Gyr^-1 mec^-1] @@ -714,7 +708,7 @@ class HaloSingle: http://adsabs.harvard.edu/abs/2013AN....334..515D Eq.(15) """ - z = self.cosmo.redshift(t) + z = cosmo.redshift(t) chi = self._coef_acceleration(z) # [Gyr^-1] # NOTE: Cassano & Brunetti's formula misses a factor of 2. Dpp = chi * p**2 / 4 # [mec^2/Gyr] @@ -760,7 +754,7 @@ class HaloSingle: http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C Eq.(38) """ - z = self.cosmo.redshift(t) + z = cosmo.redshift(t) n_th = self._n_thermal(self.M0, z) coef = -3.3e-29 * AUC.Gyr2s / self.mec # [mec/Gyr] dpdt = coef * n_th * (1 + np.log(p/n_th) / 75) @@ -776,7 +770,7 @@ class HaloSingle: http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C Eq.(39) """ - z = self.cosmo.redshift(t) + z = cosmo.redshift(t) coef = -4.8e-4 * AUC.Gyr2s / self.mec # [mec/Gyr] dpdt = (coef * (p*self.mec)**2 * ((self.magnetic_field/3.2)**2 + (1+z)**4)) @@ -793,7 +787,7 @@ class HaloSingle: Energy density of the ICM (unit: erg/cm^3) """ mass = self.M0 - f_baryon = self.cosmo.Ob0 / self.cosmo.Om0 + f_baryon = cosmo.Ob0 / cosmo.Om0 kT = self.kT_mass(mass) # [keV] N = mass * AUC.Msun2g * f_baryon / (AC.mu * AC.u) E_th = kT*AUC.keV2erg * N # [erg] @@ -820,7 +814,7 @@ class HaloSingle: Number density of the ICM Unit: [cm^-3] """ - f_baryon = self.cosmo.Ob0 / self.cosmo.Om0 + f_baryon = cosmo.Ob0 / cosmo.Om0 N = mass * AUC.Msun2g * f_baryon / (AC.mu * AC.u) Rv = self._radius_virial(mass, z) * AUC.kpc2cm # [cm] V = (4*np.pi / 3) * Rv**3 # [cm^3] -- cgit v1.2.2