From 0f96a02aaaffff1eb0a17066bd9728fca008829b Mon Sep 17 00:00:00 2001 From: Aaron LI Date: Sat, 7 Jan 2017 14:19:53 +0800 Subject: Add clusters/solver.py to solve the Fokker-Planck equation Adopt the finite difference scheme to solve the Fokker-Planck equation, following Park & Petrosian (1996, ApJS, 103, 255). --- fg21sim/extragalactic/clusters/solver.py | 276 +++++++++++++++++++++++++++++++ 1 file changed, 276 insertions(+) create mode 100644 fg21sim/extragalactic/clusters/solver.py (limited to 'fg21sim/extragalactic/clusters') diff --git a/fg21sim/extragalactic/clusters/solver.py b/fg21sim/extragalactic/clusters/solver.py new file mode 100644 index 0000000..5078c5e --- /dev/null +++ b/fg21sim/extragalactic/clusters/solver.py @@ -0,0 +1,276 @@ +# Copyright (c) 2017 Weitian LI +# MIT license + +""" +Solve the Fokker-Planck equation to derive the time evolution +of the electron spectrum (or number density distribution). +""" + +import logging + +import numpy as np + + +logger = logging.getLogger(__name__) + + +def TDMAsolver(a, b, c, d): + """ + Tri-diagonal matrix algorithm (a.k.a Thomas algorithm) solver, + which is much faster than the generic Gaussian elimination algorithm. + + a[i]*x[i-1] + b[i]*x[i] + c[i]*x[i+1] = d[i], + where: a[1] = c[n] = 0 + + References + ---------- + [1] http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm + + Credit + ------ + [1] https://gist.github.com/cbellei/8ab3ab8551b8dfc8b081c518ccd9ada9 + """ + # Number of equations + nf = len(d) + # Copy the input arrays + ac, bc, cc, dc = map(np.array, (a, b, c, d)) + for it in range(1, nf): + mc = ac[it-1] / bc[it-1] + bc[it] -= mc*cc[it-1] + dc[it] -= mc*dc[it-1] + + xc = bc + xc[-1] = dc[-1] / bc[-1] + + for il in range(nf-2, -1, -1): + xc[il] = (dc[il] - cc[il]*xc[il+1]) / bc[il] + + return xc + + +class FokkerPlanckSolver: + """ + Solve the Fokker-Planck equation. + + ∂u(x,t) ∂ / ∂u(x) \ + ------- = -- | B(x)u(x) + C(x)----- | + Q(x,t) + ∂t ∂x \ ∂x / + + u(x,t) : distribution/spectrum w.r.t. x at different times + B(x,t) : advection coefficient + C(x,t) : diffusion coefficient (>=0) + Q(x,t) : injection coefficient (>=0) + + References + ---------- + [1] Park & Petrosian 1996, ApJS, 103, 255 + http://adsabs.harvard.edu/abs/1996ApJS..103..255P + [2] Donnert & Brunetti 2014, MNRAS, 443, 3564 + http://adsabs.harvard.edu/abs/2014MNRAS.443.3564D + """ + + def __init__(self, xmin, xmax, grid_num, buffer_np, tstep, + f_advection, f_diffusion, f_injection): + self.xmin = xmin + self.xmax = xmax + # Number of points on the logarithmic grid + self.grid_num = grid_num + # Number of grid points for the buffer region near the lower boundary + self.buffer_np = buffer_np + # Time step + self.tstep = tstep + # Function f(x,t) to calculate the advection coefficient B(x,t) + self.f_advection = f_advection + # Function f(x,t) to calculate the diffusion coefficient C(x,t) + self.f_diffusion = f_diffusion + # Function f(x,t) to calculate the injection coefficient Q(x,t) + self.f_injection = f_injection + + @property + def x(self): + """ + X values of the adopted logarithmic grid. + """ + grid = np.logspace(np.log10(self.xmin), np.log10(self.xmax), + num=self.grid_num) + return grid + + @property + def dx(self): + """ + Values of delta X on the grid. + + dx[i] = (x[i+1] - x[i-1]) / 2 + Thus the first and last element is NaN. + + References: Ref.[1],Eq.(8) + """ + x = self.x + dx_ = (x[2:] - x[:-2]) / 2 + grid = np.concatenate([[np.nan], dx_, [np.nan]]) + return grid + + @property + def dx_phalf(self): + """ + Values of dx[i+1/2] on the grid. + + dx[i+1/2] = x[i+1] - x[i] + Thus the last element is NaN. + + References: Ref.[1],Eq.(8) + """ + x = self.x + dx_ = x[1:] - x[:-1] + grid = np.concatenate([dx_, [np.nan]]) + return grid + + @property + def dx_mhalf(self): + """ + Values of dx[i-1/2] on the grid. + + dx[i-1/2] = x[i] - x[i-1] + Thus the first element is NaN. + """ + x = self.x + dx_ = x[1:] - x[:-1] + grid = np.concatenate([[np.nan], dx_]) + return grid + + @staticmethod + def X_phalf(X): + """ + Calculate the values at midpoints (+1/2) for the given quantity. + + X[i+1/2] = (X[i] + X[i+1]) / 2 + Thus the last element is NaN. + + References: Ref.[1],Eq.(10) + """ + Xmid = (X[1:] + X[:-1]) / 2 + return np.concatenate([Xmid, [np.nan]]) + + @staticmethod + def X_mhalf(X): + """ + Calculate the values at midpoints (-1/2) for the given quantity. + + X[i-1/2] = (X[i-1] + X[i]) / 2 + Thus the first element is NaN. + """ + Xmid = (X[1:] + X[:-1]) / 2 + return np.concatenate([[np.nan], Xmid]) + + @staticmethod + def W(w): + # References: Ref.[1],Eqs.(27,35) + w = np.abs(w) + W = np.zeros(w.shape) * np.nan + mask = (w < 0.1) + W[mask] = 1.0 / (1 + w[mask]**2/24 + w[mask]**4/1920) + W[~mask] = (w[~mask] * np.exp(-w[~mask]/2) / + (1 - np.exp(-w[~mask]))) + return W + + def tridiagonal_coefs(self, tc, uc): + """ + Calculate the coefficients for the tridiagonal system of linear + equations corresponding to the original Fokker-Planck equation. + + -a[i]*u[i-1] + b[i]*u[i] - c[i]*u[i+1] = r[i], + where: a[0] = c[N-1] = 0 + + NOTE + ---- + When i=0 or i=N-1, b[i] is invalid due to X[-1/2] or X[N-1/2] are + invalid. Therefore, b[0] and b[N-1] should be alternatively + calculated with (e.g., no-flux) boundary condition considered. + + References: Ref.[1],Eqs.(16,18,34) + """ + x = self.x + dx = self.dx + dx_phalf = self.dx_phalf + dx_mhalf = self.dx_mhalf + dt = self.tstep + B = np.array([self.f_advection(x_, tc) for x_ in x]) + C = np.array([self.f_diffusion(x_, tc) for x_ in x]) + Q = np.array([self.f_injection(x_, tc) for x_ in x]) + # + B_phalf = self.X_phalf(B) + B_mhalf = self.X_mhalf(B) + C_phalf = self.X_phalf(C) + C_mhalf = self.X_mhalf(C) + w_phalf = dx_phalf * B_phalf / C_phalf + w_mhalf = dx_mhalf * B_mhalf / C_mhalf + W_phalf = self.W(w_phalf) + W_mhalf = self.W(w_mhalf) + Wplus_phalf = W_phalf * np.exp(w_phalf/2) + Wplus_mhalf = W_mhalf * np.exp(w_mhalf/2) + Wminus_phalf = W_phalf * np.exp(-w_phalf/2) + Wminus_mhalf = W_mhalf * np.exp(-w_mhalf/2) + # + a = (dt/dx) * (C_mhalf/dx_mhalf) * Wminus_mhalf + a[0] = 0.0 # Fix a[0] which is NaN + c = (dt/dx) * (C_phalf/dx_phalf) * Wplus_phalf + c[-1] = 0.0 # Fix c[-1] which is NaN + b = 1 + (dt/dx) * ((C_mhalf/dx_mhalf) * Wplus_mhalf + + (C_phalf/dx_phalf) * Wminus_phalf) + # Calculate b[0] & b[-1], considering the no-flux boundary condition + b[0] = 1 + (dt/dx[0]) * (C_phalf[0]/dx_phalf[0])*Wminus_phalf[0] + b[-1] = 1 + (dt/dx[-1]) * (C_mhalf[-1]/dx_mhalf[-1])*Wplus_mhalf[-1] + r = dt * Q + uc + return (a, b, c, r) + + def fix_boundary(self, uc): + """ + Truncate the lower end (i.e., near the lower boundary) of the + distribution/spectrum and then extrapolate as a power law, in order + to avoid the unphysical pile-up of electrons at the lower regime. + + References: Ref.[2],Sec.(3.3) + """ + uc = np.array(uc) + x = self.x + # Calculate the power-law index + xa = x[self.buffer_np] + xb = x[self.buffer_np+1] + ya = uc[self.buffer_np] + yb = uc[self.buffer_np+1] + s = np.log(yb/ya) / np.log(xb/xa) + uc[:self.buffer_np] = ya * (x[:self.buffer_np] / xa) ** s + return uc + + def solve_step(self, tc, uc): + """ + Solve the Fokker-Planck equation by a single step. + """ + a, b, c, r = self.tridiagonal_coefs(tc, uc) + TDM_a = -a[1:] # Also drop the first element + TDM_b = b + TDM_c = -c[:-1] # Also drop the last element + TDM_rhs = r + t2 = tc + self.tstep + u2 = TDMAsolver(TDM_a, TDM_b, TDM_c, TDM_rhs) + u2 = self.fix_boundary(u2) + # Clear negative number densities + # u2[u2 < 0] = 0 + return (t2, u2) + + def solve(self, u0, tstart, tstop): + """ + Solve the Fokker-Planck equation from ``tstart`` to ``tstop``, + with initial spectrum/distribution ``u0``. + """ + uc = u0 + tc = tstart + logger.info("Solving Fokker-Planck equation: " + + "time: %.3f - %.3f" % (tstart, tstop)) + nstep = (tstop - tc) / self.tstep + i = 0 + while tc < tstop: + i += 1 + logger.info("[%d/%d] t=%.3f ..." % (i, nstep, tc)) + tc, uc = self.solve_step(tc, uc) + return uc -- cgit v1.2.2