# Copyright (c) 2016-2017 Weitian LI # MIT license """ Flat ΛCDM cosmological model. """ import logging import numpy as np from scipy import integrate import astropy.units as au from astropy.cosmology import LambdaCDM, z_at_value logger = logging.getLogger(__name__) class Cosmology: """ Flat ΛCDM cosmological model. Attributes ---------- H0 : float Hubble parameter at present day (z=0) Om0 : float Density parameter of (dark and baryon) matter at present day Ob0 : float Density parameter of baryon at present day Ode0 : float Density parameter of dark energy at present day sigma8 : float Present-day rms density fluctuation on a scale of 8 h^-1 Mpc. References ---------- [1] https://astro.uni-bonn.de/~pavel/WIKIPEDIA/Lambda-CDM_model.html [2] https://en.wikipedia.org/wiki/Lambda-CDM_model [3] Randall, Sarazin & Ricker 2002, ApJ, 577, 579 http://adsabs.harvard.edu/abs/2002ApJ...577..579R Sec.(2) """ def __init__(self, H0=71.0, Om0=0.27, Ob0=0.046, Ode0=None, sigma8=0.834): Ode0 = 1.0 - Om0 if Ode0 is None else Ode0 if (Ode0 > 0) and abs(Om0 + Ode0 - 1) > 1e-5: raise ValueError("non-flat LambdaCDM model not supported!") self.H0 = H0 # [km/s/Mpc] self.Om0 = Om0 self.Ob0 = Ob0 self.Ode0 = Ode0 self.sigma8 = sigma8 self.cosmo = LambdaCDM(H0=H0, Om0=Om0, Ob0=Ob0, Ode0=Ode0) @property def h(self): """ Dimensionless/reduced Hubble parameter """ return self.H0 / 100.0 @property def M8(self): """ Mass contained in a sphere of radius of 8 h^-1 Mpc. Unit: [Msun] """ r = 8 * au.Mpc.to(au.cm) / self.h # [cm] M8 = (4*np.pi/3) * r**3 * self.rho_crit(0) return (M8 * au.g.to(au.solMass)) def age(self, z): """ Cosmic time at redshift z. Parameters ---------- z : float Redshift Returns ------- age : float Age of the universe (cosmic time) at the given redshift. Unit: [Gyr] """ return self.cosmo.age(z).value @property def age0(self): """ Present age of the universe. """ if not hasattr(self, "_age0"): self._age0 = self.age(0) return self._age0 def redshift(self, age): """ Invert the above age calculation, to return the redshift corresponding to the given cosmic time. Parameters ---------- age : float Age of the universe (cosmic time), unit [Gyr] Returns ------- z : float Redshift corresponding to the input age. """ return z_at_value(self.age, age) def rho_crit(self, z): """ Critical density at redshift z. Unit: [g/cm^3] """ return self.cosmo.critical_density(0).value def OmegaM(self, z): """ Density parameter of matter at redshift z. """ return self.Om0 * (1+z)**3 / self.cosmo.efunc(z)**2 def overdensity_virial(self, z): """ Calculate the virial overdensity, which generally used to determine the virial radius of a cluster. References ---------- [1] Cassano & Brunetti 2005, MNRAS, 357, 1313 http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C Eqs.(10,A4) """ omega_z = (1 / self.OmegaM(z)) - 1 Delta_c = 18*np.pi**2 * (1 + 0.4093 * omega_z**0.9052) return Delta_c def overdensity_crit(self, z): """ Critical (linear) overdensity for a region to collapse at a redshift z. References ---------- [1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579 http://adsabs.harvard.edu/abs/2002ApJ...577..579R Appendix.A, Eq.(A1) """ coef = 3 * (12*np.pi) ** (2/3) / 20 D0 = self.growth_factor(0) D_z = self.growth_factor(z) Om_z = self.OmegaM(z) delta_c = coef * (D0 / D_z) * (1 + 0.0123*np.log10(Om_z)) return delta_c def growth_factor(self, z): """ Growth factor at redshift z. References ---------- [1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579 http://adsabs.harvard.edu/abs/2002ApJ...577..579R Appendix.A, Eq.(A7) """ x0 = (2 * self.Ode0 / self.Om0) ** (1/3) x = x0 / (1 + z) coef = np.sqrt(x**3 + 2) / (x**1.5) integral = integrate.quad(lambda y: y**1.5 * (y**3+2)**(-1.5), a=0, b=x)[0] D = coef * integral return D