# Copyright (c) 2017 Weitian LI <liweitianux@live.com> # MIT license """ Simulate cluster formation (i.e., merging history) using the extended Press-Schechter formalism. References ---------- [1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579 http://adsabs.harvard.edu/abs/2002ApJ...577..579R [2] Cassano & Brunetti 2005, MNRAS, 357, 1313 http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C """ import logging import numpy as np import scipy.integrate import scipy.special import scipy.optimize from .mergertree import MergerTree from ...utils import COSMO logger = logging.getLogger(__name__) class ClusterFormation: """ Simulate the cluster formation (i.e., merging history) using the extended Press-Schechter formalism by Monte Carlo methods. References ---------- [1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579 http://adsabs.harvard.edu/abs/2002ApJ...577..579R [2] Cassano & Brunetti 2005, MNRAS, 357, 1313 http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C Parameters ---------- M0 : float Cluster mass at redshift z0 Unit: [Msun] z0 : float Redshift from where to simulate former merging history. zmax : float, optional The maximum redshift/age when to stop the formation trace. Default: 3.0 (i.e., looking back time ~11.5 Gyr) ratio_major : float, optional The mass ratio of the main and sub clusters to define whether the merger is a major event or a minor one. If ``M_main/M_sub < ratio_major``, then it is a major merger event. Default: 3.0 merger_mass_min : float, optional Minimum mass change to be regarded as a merger event instead of accretion. Unit: [Msun] Attributes ---------- mtree : `~MergerTree` Merging history of this cluster. recent_major_merger : dict, or None An dictionary containing the properties of the found most recent major merger event, or ``None`` if not found. """ def __init__(self, M0, z0, zmax=3.0, ratio_major=3.0, merger_mass_min=1e12): self.M0 = M0 # [Msun] self.z0 = z0 self.zmax = zmax self.ratio_major = ratio_major self.merger_mass_min = merger_mass_min @property def sigma_index(self): """ The power-law spectral index assumed for the following density perturbations sigma(M). References: Ref.[1],Eq.(2) """ n = -7/5 alpha = (n+3) / 6 return alpha def f_sigma(self, mass): """ Current rms density fluctuations within a sphere of specified mass (unit: Msun). It is generally sufficient to consider a power-law spectrum of density perturbations, which is consistent with the CDM models. References: Ref.[1],Eq.(2) """ alpha = self.sigma_index sigma = COSMO.sigma8 * (mass / COSMO.M8) ** (-alpha) return sigma def f_delta_c(self, z): """ w = delta_c(z) is the critical linear overdensity for a region to collapse at redshift z. This is a monotone decreasing function. References: Ref.[1],App.A,Eq.(A1) """ return COSMO.overdensity_crit(z) def f_dw_max(self, mass): """ Calculate the allowed maximum step size for tracing cluster formation, therefore, the adopted step size is chosen to be half of this maximum value. dw^2 ~< abs(d(ln(sigma(M)^2)) / d(ln(M))) * (dMc / M) * sigma(M)^2 = 2 * alpha * sigma(M)^2 * dMc / M References: Ref.[1],Sec.(3.1),Para.(1) """ alpha = self.sigma_index dMc = self.merger_mass_min return np.sqrt(2 * alpha * self.f_sigma(mass)**2 * dMc / mass) def calc_z(self, delta_c): """ Solve the redshift from the specified delta_c (a.k.a. w). """ z = scipy.optimize.newton( lambda x: self.f_delta_c(x) - delta_c, x0=0, tol=1e-5) return z def calc_mass(self, S): """ Calculate the mass corresponding to the given S. S = sigma(M)^2 References: Ref.[1],Sec.(3) """ alpha = self.sigma_index mass = COSMO.M8 * (S / COSMO.sigma8**2)**(-1/(2*alpha)) return mass @staticmethod def cdf_K(dS, dw): """ The cumulative probability distribution function of sub-cluster masses. References: Ref.[1],Eq.(5) """ p = scipy.special.erfc(dw / np.sqrt(2*dS)) return p @staticmethod def cdf_K_inv(p, dw): """ Inverse function of the above ``cdf_K()``. """ dS = 0.5 * (dw / scipy.special.erfcinv(p))**2 return dS def gen_dS(self, dw, size=None): """ Randomly generate values of dS by sampling the CDF ``cdf_K()``. """ r = np.random.uniform(size=size) dS = self.cdf_K_inv(r, dw) return dS def simulate_mergertree(self, main_only=True): """ Simulate the merger tree of this cluster by tracing its formation using the PS formalism. Parameters ---------- main_only : bool, optional Whether to only trace the forming history of the main halo/cluster. (default: True) References: Ref.[1],Sec.(3.1) """ logger.debug("Simulating cluster formation: " + "M0={:.3g}[Msun] from z={:.3f} to z={zmax} ...".format( self.M0, self.z0, zmax=self.zmax)) self.main_only = main_only if main_only: logger.debug("Only trace the formation of the *main* cluster ...") self.mtree = self._trace_main() else: logger.debug("Trace formations of both main and sub cluster ...") self.mtree = self._trace_formation(self.M0, _z=self.z0) logger.debug("Simulated cluster formation with merger tree") return self.mtree @property def recent_major_merger(self): """ Identify and return the most recent major merger event. Returns ------- event : An dictionary containing the properties of the found major event: ``{"M_main": M_main, "M_sub": M_sub, "R_mass": R_mass, "z": z, "age": age}``; ``None`` if no major event found. """ mtree = self.mtree event = None while mtree and mtree.main: if mtree.sub is None: mtree = mtree.main continue M_main = mtree.main.data["mass"] M_sub = mtree.sub.data["mass"] z = mtree.main.data["z"] age = mtree.main.data["age"] if M_main / M_sub < self.ratio_major: # Found a major merger event event = {"M_main": M_main, "M_sub": M_sub, "R_mass": M_main / M_sub, "z": z, "age": age} break # A minor merger event, continue mtree = mtree.main return event def _trace_main(self): """ Iteratively trace the merger and accretion events of the main cluster/halo. """ # Initial properties zc = self.z0 Mc = self.M0 mtree_root = MergerTree(data={"mass": Mc, "z": zc, "age": COSMO.age(zc)}) logger.debug("[main] z=%.4f : mass=%g [Msun]" % (zc, Mc)) mtree = mtree_root while True: # Whether to stop the trace if self.zmax is not None and zc > self.zmax: break if Mc <= self.merger_mass_min: break # Trace the formation by simulate a merger/accretion event # Notation: progenitor (*1) -> current (*2) # Current properties w2 = self.f_delta_c(z=zc) S2 = self.f_sigma(Mc) ** 2 dw = 0.5 * self.f_dw_max(Mc) dS = self.gen_dS(dw) # Progenitor properties z1 = self.calc_z(w2 + dw) age1 = COSMO.age(z1) S1 = S2 + dS M1 = self.calc_mass(S1) dM = Mc - M1 M_min = min(M1, dM) if M_min <= self.merger_mass_min: # Accretion M_main = Mc - M_min # NOTE: no sub node else: # Merger event M_main = max(M1, dM) M_sub = M_min mtree.sub = MergerTree(data={"mass": M_sub, "z": z1, "age": age1}) logger.debug("[sub] z=%.4f : mass=%g [Msun]" % (z1, M_sub)) # Update main cluster mtree.main = MergerTree(data={"mass": M_main, "z": z1, "age": age1}) logger.debug("[main] z=%.4f : mass=%g [Msun]" % (z1, M_main)) # Update for next iteration Mc = M_main zc = z1 mtree = mtree.main return mtree_root def _trace_formation(self, M, _z=None, zmax=None): """ Recursively trace the cluster formation and thus simulate its merger tree. """ z = 0.0 if _z is None else _z node_data = {"mass": M, "z": z, "age": COSMO.age(z)} # Whether to stop the trace if self.zmax is not None and z > self.zmax: return MergerTree(data=node_data) if M <= self.merger_mass_min: return MergerTree(data=node_data) # Trace the formation by simulate a merger/accretion event # Notation: progenitor (*1) -> current (*2) # Current properties w2 = self.f_delta_c(z=z) S2 = self.f_sigma(M) ** 2 dw = 0.5 * self.f_dw_max(M) dS = self.gen_dS(dw) # Progenitor properties z1 = self.calc_z(w2 + dw) S1 = S2 + dS M1 = self.calc_mass(S1) dM = M - M1 M_min = min(M1, dM) if M_min <= self.merger_mass_min: # Accretion M_new = M - M_min return MergerTree( data=node_data, main=self._trace_formation(M_new, _z=z1), sub=None ) else: # Merger event M_main = max(M1, dM) M_sub = M_min return MergerTree( data=node_data, main=self._trace_formation(M_main, _z=z1), sub=self._trace_formation(M_sub, _z=z1) )