# Copyright (c) 2017 Weitian LI <liweitianux@live.com> # MIT license """ Simulate cluster formation (i.e., merging history) using the extended Press-Schechter formalism. References ---------- [1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579 http://adsabs.harvard.edu/abs/2002ApJ...577..579R [2] Cassano & Brunetti 2005, MNRAS, 357, 1313 http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C """ import logging import numpy as np import scipy.integrate import scipy.special import scipy.optimize from .mergertree import MergerTree from ...utils.cosmology import Cosmology logger = logging.getLogger(__name__) class ClusterFormation: """ Simulate the cluster formation (i.e., merging history) using the extended Press-Schechter formalism by Monte Carlo methods. References ---------- [1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579 http://adsabs.harvard.edu/abs/2002ApJ...577..579R [2] Cassano & Brunetti 2005, MNRAS, 357, 1313 http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C Parameters ---------- M0 : float Cluster mass at redshift z0 Unit: [Msun] z0 : float Redshift from where to simulate former merging history. configs : `ConfigManager` A `ConfigManager` instance containing default and user configurations. For more details, see the example configuration specifications. Attributes ---------- cosmo : `~Cosmology` Adopted cosmological model with custom utility functions. mtree : `~MergerTree` Merging history of this cluster. """ def __init__(self, M0, z0, configs): self.M0 = M0 # [Msun] self.z0 = z0 self.configs = configs self._set_configs() def _set_configs(self): """ Set up the necessary class attributes according to the configs. """ comp = "extragalactic/halos" # Minimum mass change (unit: Msun) of the main-cluster for a merger self.merger_mass_min = self.configs.getn(comp+"/merger_mass_min") # Cosmology model self.H0 = self.configs.getn("cosmology/H0") self.OmegaM0 = self.configs.getn("cosmology/OmegaM0") self.sigma8 = self.configs.getn("cosmology/sigma8") self.cosmo = Cosmology(H0=self.H0, Om0=self.OmegaM0, sigma8=self.sigma8) logger.info("Loaded and set up configurations") @property def sigma_index(self): """ The power-law spectral index assumed for the following density perturbations sigma(M). References: Ref.[1],Eq.(2) """ n = -7/5 alpha = (n+3) / 6 return alpha def f_sigma(self, mass): """ Current rms density fluctuations within a sphere of specified mass (unit: Msun). It is generally sufficient to consider a power-law spectrum of density perturbations, which is consistent with the CDM models. References: Ref.[1],Eq.(2) """ alpha = self.sigma_index sigma = self.cosmo.sigma8 * (mass / self.cosmo.M8) ** (-alpha) return sigma def f_delta_c(self, z): """ w = delta_c(z) is the critical linear overdensity for a region to collapse at redshift z. This is a monotone decreasing function. References: Ref.[1],App.A,Eq.(A1) """ return self.cosmo.overdensity_crit(z) def f_dw_max(self, mass): """ Calculate the allowed maximum step size for tracing cluster formation, therefore, the adopted step size is chosen to be half of this maximum value. dw^2 ~< abs(d(ln(sigma(M)^2)) / d(ln(M))) * (dMc / M) * sigma(M)^2 = 2 * alpha * sigma(M)^2 * dMc / M References: Ref.[1],Sec.(3.1),Para.(1) """ alpha = self.sigma_index dMc = self.merger_mass_min return np.sqrt(2 * alpha * self.f_sigma(mass)**2 * dMc / mass) def calc_z(self, delta_c): """ Solve the redshift from the specified delta_c (a.k.a. w). """ z = scipy.optimize.newton( lambda x: self.f_delta_c(x) - delta_c, x0=0, tol=1e-5) return z def calc_mass(self, S): """ Calculate the mass corresponding to the given S. S = sigma(M)^2 References: Ref.[1],Sec.(3) """ alpha = self.sigma_index mass = self.cosmo.M8 * (S / self.cosmo.sigma8**2)**(-1/(2*alpha)) return mass @staticmethod def cdf_K(dS, dw): """ The cumulative probability distribution function of sub-cluster masses. References: Ref.[1],Eq.(5) """ p = scipy.special.erfc(dw / np.sqrt(2*dS)) return p @staticmethod def cdf_K_inv(p, dw): """ Inverse function of the above ``cdf_K()``. """ dS = 0.5 * (dw / scipy.special.erfcinv(p))**2 return dS def gen_dS(self, dw, size=None): """ Randomly generate values of dS by sampling the CDF ``cdf_K()``. """ r = np.random.uniform(size=size) dS = self.cdf_K_inv(r, dw) return dS def simulate_mergertree(self): """ Simulate the merger tree of this cluster by tracing its formation using the PS formalism. References: Ref.[1],Sec.(3.1) """ logger.info("Simulating cluster formation: " + "M0={:.3g}[Msun] from z={:.2f} ...".format( self.M0, self.z0)) self.mtree = self._trace_formation(self.M0, dMc=self.merger_mass_min, _z=self.z0) logger.info("Simulated cluster formation with merger tree") return self.mtree def _trace_formation(self, M, dMc, _z=None): """ Recursively trace the cluster formation and thus simulate its merger tree. """ z = 0.0 if _z is None else _z node_data = {"mass": M, "z": z, "age": self.cosmo.age(z)} if M <= dMc: # Stop the trace return MergerTree(data=node_data) # Trace the formation by simulate a merger/accretion event # Notation: progenitor (*1) -> current (*2) # Current properties w2 = self.f_delta_c(z=z) S2 = self.f_sigma(M) ** 2 dw = 0.5 * self.f_dw_max(M) dS = self.gen_dS(dw) # Progenitor properties z1 = self.calc_z(w2 + dw) S1 = S2 + dS M1 = self.calc_mass(S1) dM = M - M1 M_min = min(M1, dM) if M_min <= dMc: # Accretion M_new = M - M_min return MergerTree( data=node_data, main=self._trace_formation(M_new, dMc=dMc, _z=z1), sub=None ) else: # Merger event M_main = max(M1, dM) M_sub = M_min return MergerTree( data=node_data, main=self._trace_formation(M_main, dMc=dMc, _z=z1), sub=self._trace_formation(M_sub, dMc=dMc, _z=z1) )