# Copyright (c) 2017 Weitian LI <weitian@aaronly.me> # MIT license """ Simulate (giant) radio halo originating from the last/ most recent cluster-cluster major merger event, following the "statistical magneto-turbulent model" proposed by [cassano2005]_, but with many modifications and simplifications. References ---------- .. [brunetti2011] Brunetti & Lazarian 2011, MNRAS, 410, 127 http://adsabs.harvard.edu/abs/2011MNRAS.410..127B .. [cassano2005] Cassano & Brunetti 2005, MNRAS, 357, 1313 http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C .. [cassano2006] Cassano, Brunetti & Setti, 2006, MNRAS, 369, 1577 http://adsabs.harvard.edu/abs/2006MNRAS.369.1577C .. [cassano2012] Cassano et al. 2012, A&A, 548, A100 http://adsabs.harvard.edu/abs/2012A%26A...548A.100C .. [donnert2013] Donnert 2013, AN, 334, 615 http://adsabs.harvard.edu/abs/2013AN....334..515D .. [donnert2014] Donnert & Brunetti 2014, MNRAS, 443, 3564 http://adsabs.harvard.edu/abs/2014MNRAS.443.3564D .. [sarazin1999] Sarazin 1999, ApJ, 520, 529 http://adsabs.harvard.edu/abs/1999ApJ...520..529S """ import logging import numpy as np from . import helper from .solver import FokkerPlanckSolver from .emission import SynchrotronEmission from ...configs import CONFIGS from ...utils import COSMO from ...utils.units import (Units as AU, UnitConversions as AUC) from ...utils.convert import Fnu_to_Tb_fast logger = logging.getLogger(__name__) class RadioHalo: """ Simulate the extended radio halo emission from galaxy cluster experiencing on-going/recent merger. Description ----------- 1. Calculate the merger crossing time (t_cross; ~1 Gyr); 2. Calculate the diffusion coefficient (Dpp) from the systematic acceleration timescale (tau_acc; ~0.1 Gyr). The acceleration diffusion is assumed to have an action time ~ t_cross (i.e., only during merger crossing), and then been disabled (i.e., only radiation and ionization losses later); 3. Assume the electrons are constantly injected and has a power-law energy spectrum; 4. Determine the initial electron density TODO... Parameters ---------- M_obs : float Cluster virial mass at the current observation (simulation end) time. Unit: [Msun] z_obs : float Redshift of the current observation (simulation end) time. M_main, M_sub : float The main and sub cluster masses before the (major) merger. Unit: [Msun] z_merger : float The redshift when the (major) merger begins. Attributes ---------- fpsolver : `~FokkerPlanckSolver` The solver instance to calculate the electron spectrum evolution. radius : float The halo radius (scales with the virial radius) Unit: [kpc] """ def __init__(self, M_obs, z_obs, M_main, M_sub, z_merger, configs=CONFIGS): self.M_obs = M_obs self.z_obs = z_obs self.M_main = M_main self.M_sub = M_sub self.z_merger = z_merger self.configs = configs self._set_configs() self._set_solver() def _set_configs(self): comp = "extragalactic/halos" self.beta_turb = self.configs.getn(comp+"/beta_turb") self.eta_e = self.configs.getn(comp+"/eta_e") self.gamma_min = self.configs.getn(comp+"/gamma_min") self.gamma_max = self.configs.getn(comp+"/gamma_max") self.gamma_np = self.configs.getn(comp+"/gamma_np") self.buffer_np = self.configs.getn(comp+"/buffer_np") self.time_step = self.configs.getn(comp+"/time_step") self.injection_index = self.configs.getn(comp+"/injection_index") def _set_solver(self): self.fpsolver = FokkerPlanckSolver( xmin=self.gamma_min, xmax=self.gamma_max, x_np=self.gamma_np, tstep=self.time_step, f_advection=self.fp_advection, f_diffusion=self.fp_diffusion, f_injection=self.fp_injection, buffer_np=self.buffer_np, ) @property def gamma(self): """ The logarithmic grid adopted for solving the equation. """ return self.fpsolver.x @property def age_obs(self): return COSMO.age(self.z_obs) @property def age_merger(self): return COSMO.age(self.z_merger) @property def time_crossing(self): """ The time duration of the sub-cluster crossing the main cluster, which is also used to approximate the merging time, during which the turbulence acceleration is regarded as effective. Unit: [Gyr] """ return helper.time_crossing(self.M_main, self.M_sub, z=self.z_merger) @property def radius(self): """ The halo radius derived from the virial radius by a scaling relation. Unit: [kpc] """ mass = self.M_main + self.M_sub # [Msun] r_halo = helper.radius_halo(mass, self.z_merger) # [kpc] return r_halo @property def angular_radius(self): """ The angular radius of the radio halo. Unit: [arcsec] """ DA = COSMO.DA(self.z) * 1e3 # [Mpc] -> [kpc] theta = self.radius / DA # [rad] return theta * AUC.rad2arcsec @property def volume(self): """ The halo volume, calculated from the above radius. Unit: [cm^3] """ r_cm = self.radius * AUC.kpc2cm return (4*np.pi/3) * r_cm**3 @property def magnetic_field(self): """ The magnetic field strength at the simulated observation time (i.e., cluster mass of ``self.M_obs``), will be used to calculate the synchrotron emissions. Unit: [uG] """ return helper.magnetic_field(self.M_obs) def calc_electron_spectrum(self, zbegin=None, zend=None, n0_e=None): """ Calculate the relativistic electron spectrum by solving the Fokker-Planck equation. Parameters ---------- zbegin : float, optional The redshift from where to solve the Fokker-Planck equation. Default: ``self.z_merger``. zend : float, optional The redshift where to stop solving the Fokker-Planck equation. Default: ``self.z_obs``. n0_e : 1D `~numpy.ndarray`, optional The initial electron number distribution. Unit: [cm^-3]. Default: accumulated constantly injected electrons until zbegin. Returns ------- electron_spec : float 1D `~numpy.ndarray` The solved electron spectrum at ``zend``. Unit: [cm^-3] """ if zbegin is None: tstart = COSMO.age(self.z_merger) else: tstart = COSMO.age(zbegin) if zend is None: tstop = COSMO.age(self.z_obs) else: tstop = COSMO.age(zend) if n0_e is None: # Accumulated constantly injected electrons until ``tstart``. n_inj = self.fp_injection(self.gamma) n0_e = n_inj * tstart self.electron_spec = self.fpsolver.solve(u0=n0_e, tstart=tstart, tstop=tstop) return self.electron_spec def calc_emissivity(self, frequencies, n_e=None, gamma=None): """ Calculate the synchrotron emissivity for the derived electron spectrum. Parameters ---------- frequencies : float, or 1D `~numpy.ndarray` The frequencies where to calculate the synchrotron emissivity. Unit: [MHz] n_e : 1D `~numpy.ndarray`, optional The electron spectrum (w.r.t. Lorentz factors γ). If not provided, then used the cached ``self.electron_spec`` solved above. Unit: [cm^-3] gamma : 1D `~numpy.ndarray`, optional The Lorentz factors γ of the electron spectrum. If not provided, then used ``self.gamma``. Returns ------- emissivity : float, or 1D `~numpy.ndarray` The calculated synchrotron emissivity at each specified frequency. Unit: [erg/s/cm^3/Hz] """ if n_e is None: n_e = self.electron_spec if gamma is None: gamma = self.gamma syncem = SynchrotronEmission(gamma=gamma, n_e=n_e, B=self.magnetic_field) emissivity = syncem.emissivity(frequencies) return emissivity def calc_power(self, emissivity): """ Calculate the synchrotron power (i.e., power *emitted* per unit frequency) from emissivity. NOTE ---- The calculated power (a.k.a. spectral luminosity) is in units of [W/Hz] which is common in radio astronomy, instead of [erg/s/Hz]! 1 [W] = 1e7 [erg/s] Parameters ---------- emissivity : float, or 1D `~numpy.ndarray` The synchrotron emissivity at multiple frequencies. Unit: [erg/s/cm^3/Hz] Returns ------- power : float, or 1D `~numpy.ndarray` The calculated synchrotron power w.r.t. each input emissivity. Unit: [W/Hz] """ emissivity = np.asarray(emissivity) power = emissivity * self.volume # [erg/s/Hz] power *= 1e-7 # [erg/s/Hz] -> [W/Hz] return power def calc_flux(self, emissivity): """ Calculate the synchrotron flux density (i.e., power *observed* per unit frequency) from emissivity. Parameters ---------- emissivity : float, or 1D `~numpy.ndarray` The synchrotron emissivity at multiple frequencies. Unit: [erg/s/cm^3/Hz] Returns ------- flux : float, or 1D `~numpy.ndarray` The calculated synchrotron flux w.r.t. each input emissivity. Unit: [Jy] = 1e-23 [erg/s/cm^2/Hz] = 1e-26 [W/m^2/Hz] """ power = self.calc_power(emissivity) # [W/Hz] DL = COSMO.DL(self.z) * AUC.Mpc2m # [m] flux = 1e26 * power / (4*np.pi * DL*DL) # [Jy] return flux def calc_brightness_mean(self, emissivity, frequencies, pixelsize=None): """ Calculate the mean surface brightness (power observed per unit frequency and per unit solid angle) at the specified frequencies from emissivity. NOTE ---- If the solid angle that the radio halo extends is smaller than the specified pixel area, then the halo is assumed to cover a solid angle of 1 pixel. Parameters ---------- emissivity : float, or 1D `~numpy.ndarray` The synchrotron emissivity at multiple frequencies. Unit: [erg/s/cm^3/Hz] frequencies : float, or 1D `~numpy.ndarray` The frequencies where to calculate the synchrotron emissivity. Unit: [MHz] pixelsize : float, optional The pixel size of the output simulated sky image. Unit: [arcsec] Returns ------- Tb : float, or 1D `~numpy.ndarray` The mean surface brightness at each frequency. Unit: [K] <-> [Jy/pixel] """ omega = np.pi * self.angular_radius**2 # [arcsec^2] if pixelsize: pixelarea = pixelsize ** 2 # [arcsec^2] if omega < pixelarea: omega = pixelarea logger.warning("Halo sky coverage (%.2f [arcsec^2])" % omega, " < pixel area (%.2f [arcsec^2])" % pixelarea) flux = self.calc_flux(emissivity) Tb = [Fnu_to_Tb_fast(Fnu, omega, freq) for Fnu, freq in zip(np.array(flux, ndmin=1), np.array(frequencies, ndmin=1))] if len(Tb) == 1: return Tb[0] else: return np.array(Tb) def fp_injection(self, gamma, t=None): """ Electron injection (rate) term for the Fokker-Planck equation. NOTE ---- The injected electrons are assumed to have a power-law spectrum and a constant injection rate. Qe(γ) = Ke * γ^(-s), Ke: constant injection rate Parameters ---------- gamma : float, or float 1D `~numpy.ndarray` Lorentz factors of electrons t : None Currently a constant injection rate is assumed, therefore this parameter is not used. Keep it for the consistency with other functions. Returns ------- Qe : float, or float 1D `~numpy.ndarray` Current electron injection rate at specified energies (gamma). Unit: [cm^-3 Gyr^-1] References ---------- Ref.[cassano2005],Eqs.(31,32,33) """ Ke = self._injection_rate Qe = Ke * gamma**(-self.injection_index) return Qe def fp_diffusion(self, gamma, t): """ Diffusion term/coefficient for the Fokker-Planck equation. NOTE ---- The diffusion coefficients cannot be zero or negative, which may cause unstable or wrong results. So constrain ``tau_acc`` be a sufficient large but finite number. Parameters ---------- gamma : float, or float 1D `~numpy.ndarray` The Lorentz factors of electrons t : float Current (cosmic) time when solving the equation Unit: [Gyr] Returns ------- diffusion : float, or float 1D `~numpy.ndarray` Diffusion coefficients Unit: [Gyr^-1] References ---------- Ref.[donnert2013],Eq.(15) """ tau_acc = self._tau_acceleration(t) # [Gyr] diffusion = gamma**2 / (4 * tau_acc) return diffusion def fp_advection(self, gamma, t): """ Advection term/coefficient for the Fokker-Planck equation, which describes a systematic tendency for upward or downard drift of particles. This term is also called the "generalized cooling function" by [donnert2014], which includes all relevant energy loss functions and the energy gain function due to turbulence. Returns ------- advection : float, or float 1D `~numpy.ndarray` Advection coefficients, describing the energy loss/gain rates. Unit: [Gyr^-1] """ advection = (abs(self._loss_ion(gamma, t)) + abs(self._loss_rad(gamma, t)) - (self.fp_diffusion(gamma, t) * 2 / gamma)) return advection def _mass(self, t): """ Calculate the main cluster mass at the given (cosmic) time. NOTE ---- We assume that the main cluster grows (i.e., gains mass) linearly in time from (M_main, z_merge) to (M_obs, z_obs). Parameters ---------- t : float The (cosmic) time/age. Unit: [Gyr] Returns ------- mass : float The mass of the main cluster. Unit: [Msun] """ t_merger = self.age_merger rate = (self.M_obs - self.M_main) / (self.age_obs - t_merger) mass = rate * (t - t_merger) + self.M_main return mass def _tau_acceleration(self, t): """ Calculate the systematic acceleration timescale at the given (cosmic) time. NOTE ---- A reference value of the acceleration time due to TTD (transit-time damping) resonance is ~0.1 Gyr (Ref.[brunetti2011], Eq.(27) below); the formula derived by [cassano2005] (Eq.(40)) has a dependence on ``beta_turb``. NOTE ---- A zero diffusion coefficient may lead to unstable/wrong results, so constrain this acceleration timescale be finite. Returns ------- tau : float The acceleration timescale. Unit: [Gyr] """ # The reference/typical acceleration timescale tau_ref = 0.1 # [Gyr] # The maximum timescale to avoid unstable results tau_max = 100.0 # [Gyr] if t > self.age_merger + self.time_crossing: tau = tau_max else: tau = tau_ref / self.beta_turb return tau @property def _injection_rate(self): """ The constant electron injection rate assumed. Unit: [cm^-3 Gyr^-1] The injection rate is parametrized by assuming that the total energy injected in the relativistic electrons during the cluster life (e.g., ``age_obs`` here) is a fraction (``self.eta_e``) of the total thermal energy of the cluster. Note that we assume that the relativistic electrons only permeate the halo volume (i.e., of radius ``self.radius``) instead of the whole cluster volume (of virial radius). Qe(γ) = Ke * γ^(-s), int[ Qe(γ) γ me c^2 ]dγ * t_cluster * V_halo = eta_e * e_th * V_cluster => Ke = [(s-2) * eta_e * e_th * γ_min^(s-2) * (R_vir/R_halo)^3 / me / c^2 / t_cluster] References ---------- Ref.[cassano2005],Eqs.(31,32,33) """ s = self.injection_index R_halo = self.radius # [kpc] R_vir = helper.radius_virial(self.M_obs, self.z_obs) # [kpc] e_thermal = helper.density_energy_thermal(self.M_obs, self.z_obs) term1 = (s-2) * self.eta_e * e_thermal # [erg cm^-3] term2 = self.gamma_min**(s-2) * (R_vir/R_halo)**3 term3 = AU.mec2 * self.age_obs # [erg Gyr] Ke = term1 * term2 / term3 # [cm^-3 Gyr^-1] return Ke def _loss_ion(self, gamma, t): """ Energy loss through ionization and Coulomb collisions. Parameters ---------- gamma : float, or float 1D `~numpy.ndarray` The Lorentz factors of electrons t : float The cosmic time/age Unit: [Gyr] Returns ------- loss : float, or float 1D `~numpy.ndarray` The energy loss rates Unit: [Gyr^-1] References ---------- Ref.[sarazin1999],Eq.(9) """ z = COSMO.redshift(t) mass = self._mass(t) n_th = helper.density_number_thermal(mass, z) coef = -1.20e-12 * AUC.Gyr2s # [Gyr^-1] loss = coef * n_th * (1 + np.log(gamma/n_th) / 75) return loss def _loss_rad(self, gamma, t): """ Energy loss via synchrotron emission and inverse Compton scattering off the CMB photons. References ---------- Ref.[sarazin1999],Eq.(6,7) """ z = COSMO.redshift(t) mass = self._mass(t) B = helper.magnetic_field(mass) coef = -1.37e-20 * AUC.Gyr2s # [Gyr^-1] loss = coef * gamma**2 * ((B/3.25)**2 + (1+z)**4) return loss