# Copyright (c) 2017 Weitian LI <weitian@aaronly.me> # MIT license """ Solve the Fokker-Planck equation to derive the time evolution of the electron spectrum (or number density distribution). """ import logging import numpy as np logger = logging.getLogger(__name__) def TDMAsolver(a, b, c, d): """ Tri-diagonal matrix algorithm (a.k.a Thomas algorithm) solver, which is much faster than the generic Gaussian elimination algorithm. a[i]*x[i-1] + b[i]*x[i] + c[i]*x[i+1] = d[i], where: a[0] = c[N-1] = 0 Example ------- >>> A = np.array([[10, 2, 0, 0], [ 3, 10, 4, 0], [ 0, 1, 7, 5], [ 0, 0, 3, 4]], dtype=float) >>> a = np.array([ 3, 1, 3], dtype=float) >>> b = np.array([10, 10, 7, 4], dtype=float) >>> c = np.array([ 2, 4, 5 ], dtype=float) >>> d = np.array([ 3, 4, 5, 6], dtype=float) >>> print(TDMAsolver(a, b, c, d)) [ 0.14877589 0.75612053 -1.00188324 2.25141243] # compare against numpy linear algebra library >>> print(np.linalg.solve(A, d)) [ 0.14877589 0.75612053 -1.00188324 2.25141243] References ---------- [1] http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm Credit ------ [1] https://gist.github.com/cbellei/8ab3ab8551b8dfc8b081c518ccd9ada9 """ # Number of equations nf = len(d) # Copy the input arrays ac, bc, cc, dc = map(np.array, (a, b, c, d)) for it in range(1, nf): mc = ac[it-1] / bc[it-1] bc[it] -= mc*cc[it-1] dc[it] -= mc*dc[it-1] xc = bc xc[-1] = dc[-1] / bc[-1] for il in range(nf-2, -1, -1): xc[il] = (dc[il] - cc[il]*xc[il+1]) / bc[il] return xc class FokkerPlanckSolver: """ Solve the Fokker-Planck equation: ∂u(x,t) ∂ / ∂u(x) \ u(x,t) ------- = -- | B(x)u(x) + C(x)----- | + Q(x,t) - ------ ∂t ∂x \ ∂x / T(x,t) u(x,t) : distribution/spectrum w.r.t. x at different times B(x,t) : advection coefficient C(x,t) : diffusion coefficient (>0) Q(x,t) : injection coefficient (>=0) T(x,t) : escape coefficient NOTE: The no-flux boundary condition is used. Parameters ---------- xmin, xmax : float The minimum and maximum bounds of the X (spatial/momentum) axis. x_np : int Number of (logarithmic grid) points/cells along the X axis tstep : float Specify to use the constant time step for solving the equation. f_advection : function Function f(x,t) to calculate the advection coefficient B(x,t) f_diffusion : function Function f(x,t) to calculate the diffusion coefficient C(x,t) f_injection : function Function f(x,t) to calculate the injection coefficient Q(x,t) f_escape : optional Function f(x,t) to calculate the escape coefficient T(x,t) buffer_np : int, optional Number of grid points taking as the buffer region near the lower boundary. The densities within this buffer region will be replaced by extrapolating an power law to avoid unphysical accumulations. This fix is ignored if this parameter is not specified. NOTE ---- All above functions should accept two parameters: ``(x, t)``, where ``x`` is an 1D float `~numpy.ndarray` representing the adopted logarithmic grid points along the spatial/energy axis, ``t`` is the time of each solving step. NOTE ---- The diffusion coefficients (i.e., calculated by ``f_diffusion()``) should be *positive* (i.e., C(x) > 0), otherwise unstable or wrong results may occur, due to the current numerical scheme/algorithm adopted. References ---------- [1] Park & Petrosian 1996, ApJS, 103, 255 http://adsabs.harvard.edu/abs/1996ApJS..103..255P [2] Donnert & Brunetti 2014, MNRAS, 443, 3564 http://adsabs.harvard.edu/abs/2014MNRAS.443.3564D """ def __init__(self, xmin, xmax, x_np, tstep, f_advection, f_diffusion, f_injection, f_escape=None, buffer_np=None): self.xmin = xmin self.xmax = xmax self.x_np = x_np self.tstep = tstep self.f_advection = f_advection self.f_diffusion = f_diffusion self.f_injection = f_injection self.f_escape = f_escape self.buffer_np = buffer_np @property def x(self): """ X values of the adopted logarithmic grid. """ grid = np.logspace(np.log10(self.xmin), np.log10(self.xmax), num=self.x_np) return grid @property def dx(self): """ Values of dx[i] on the grid. dx[i] = (x[i+1] - x[i-1]) / 2 NOTE: Extrapolate the x grid by 1 point beyond each side, therefore avoid NaN for the first and last element of dx[i]. Otherwise, the following calculation of tridiagonal coefficients may be invalid on the boundary elements. References: Ref.[1],Eq.(8) """ x = self.x # Extrapolate the x grid by 1 point beyond each side x2 = np.concatenate([ [x[0]**2/x[1]], x, [x[-1]**2/x[-2]], ]) dx_ = (x2[2:] - x2[:-2]) / 2 return dx_ @property def dx_phalf(self): """ Values of dx[i+1/2] on the grid. dx[i+1/2] = x[i+1] - x[i] Thus the last element is NaN. References: Ref.[1],Eq.(8) """ x = self.x dx_ = x[1:] - x[:-1] grid = np.concatenate([dx_, [np.nan]]) return grid @property def dx_mhalf(self): """ Values of dx[i-1/2] on the grid. dx[i-1/2] = x[i] - x[i-1] Thus the first element is NaN. """ x = self.x dx_ = x[1:] - x[:-1] grid = np.concatenate([[np.nan], dx_]) return grid @staticmethod def X_phalf(X): """ Calculate the values at midpoints (+1/2) for the given quantity. X[i+1/2] = (X[i] + X[i+1]) / 2 Thus the last element is NaN. References: Ref.[1],Eq.(10) """ Xmid = (X[1:] + X[:-1]) / 2 return np.concatenate([Xmid, [np.nan]]) @staticmethod def X_mhalf(X): """ Calculate the values at midpoints (-1/2) for the given quantity. X[i-1/2] = (X[i-1] + X[i]) / 2 Thus the first element is NaN. """ Xmid = (X[1:] + X[:-1]) / 2 return np.concatenate([[np.nan], Xmid]) @staticmethod def W(w): # References: Ref.[1],Eqs.(27,35) with np.errstate(invalid="ignore"): # Ignore NaN's w = np.abs(w) mask = (w < 0.1) # Comparison on NaN gives False, as expected W = np.zeros(w.shape) * np.nan W[mask] = 1.0 / (1 + w[mask]**2/24 + w[mask]**4/1920) W[~mask] = (w[~mask] * np.exp(-w[~mask]/2) / (1 - np.exp(-w[~mask]))) return W @staticmethod def bound_w(w, wmin=1e-8, wmax=1e3): """ Bound the absolute values of w within [wmin, wmax]. To avoid the underflow/overflow during later W/Wplus/Wminus calculations. """ with np.errstate(invalid="ignore"): # Ignore NaN's m1 = (np.abs(w) < wmin) m2 = (np.abs(w) > wmax) ww = np.array(w) ww[m1] = wmin * np.sign(ww[m1]) ww[m2] = wmax * np.sign(ww[m2]) return ww def Wplus(self, w): # References: Ref.[1],Eq.(32) ww = self.bound_w(w) W = self.W(ww) Wplus = W * np.exp(ww/2) return Wplus def Wminus(self, w): # References: Ref.[1],Eq.(32) ww = self.bound_w(w) W = self.W(ww) Wminus = W * np.exp(-ww/2) return Wminus def tridiagonal_coefs(self, tc, uc): """ Calculate the coefficients for the tridiagonal system of linear equations corresponding to the original Fokker-Planck equation. -a[i]*u[i-1] + b[i]*u[i] - c[i]*u[i+1] = r[i], where: a[0] = c[N-1] = 0 NOTE ---- When i=0 or i=N-1, b[i] is invalid due to X[-1/2] or X[N-1/2] are invalid. Therefore, b[0] and b[N-1] should be alternatively calculated with (e.g., no-flux) boundary condition considered. References: Ref.[1],Eqs.(16,18,34) """ x = self.x dx = self.dx dx_phalf = self.dx_phalf dx_mhalf = self.dx_mhalf dt = self.tstep B = self.f_advection(x, tc) C = self.f_diffusion(x, tc) Q = self.f_injection(x, tc) # B_phalf = self.X_phalf(B) B_mhalf = self.X_mhalf(B) C_phalf = self.X_phalf(C) C_mhalf = self.X_mhalf(C) w_phalf = dx_phalf * B_phalf / C_phalf w_mhalf = dx_mhalf * B_mhalf / C_mhalf Wplus_phalf = self.Wplus(w_phalf) Wplus_mhalf = self.Wplus(w_mhalf) Wminus_phalf = self.Wminus(w_phalf) Wminus_mhalf = self.Wminus(w_mhalf) # a = (dt/dx) * (C_mhalf/dx_mhalf) * Wminus_mhalf a[0] = 0.0 # Fix a[0] which is NaN c = (dt/dx) * (C_phalf/dx_phalf) * Wplus_phalf c[-1] = 0.0 # Fix c[-1] which is NaN b = 1 + (dt/dx) * ((C_mhalf/dx_mhalf) * Wplus_mhalf + (C_phalf/dx_phalf) * Wminus_phalf) # Calculate b[0] & b[-1], considering the no-flux boundary condition b[0] = 1 + (dt/dx[0]) * (C_phalf[0]/dx_phalf[0])*Wminus_phalf[0] b[-1] = 1 + (dt/dx[-1]) * (C_mhalf[-1]/dx_mhalf[-1])*Wplus_mhalf[-1] # Escape from the system if self.f_escape is not None: T = self.f_escape(x, tc) b += dt / T # Right-hand side r = dt * Q + uc return (a, b, c, r) def fix_boundary(self, uc): """ Due to the no-flux boundary condition adopted, particles may unphysically pile up near the lower boundary. Therefore, a buffer region spanning ``self.buffer_np`` cells is chosen, within which the densities are replaced by extrapolating from the upper density distribution as a power law, and the power-law index is determined by fitting to the data points of ``self.buffer_np`` cells on the upper side of the buffer region. References: Ref.[2],Sec.(3.3) """ if self.buffer_np is None: return uc if (uc <= 0.0).sum() > 0: logger.warning("solved density has negative values!") return uc x = self.x # Calculate the power-law index from ``self.buffer_np`` data # points just right of the buffer region. xp = x[self.buffer_np:(self.buffer_np*2)] yp = uc[self.buffer_np:(self.buffer_np*2)] # Power-law fit pfit = np.polyfit(np.log10(xp), np.log10(yp), deg=1) xbuf = x[:self.buffer_np] ybuf = 10 ** np.polyval(pfit, np.log10(xbuf)) uc[:self.buffer_np] = ybuf return uc def time_step(self): """ Adaptively determine the time step for solving the equation. TODO/XXX """ pass def solve_step(self, tc, uc): """ Solve the Fokker-Planck equation by a single step. """ a, b, c, r = self.tridiagonal_coefs(tc=tc, uc=uc) TDM_a = -a[1:] # Also drop the first element TDM_b = b TDM_c = -c[:-1] # Also drop the last element TDM_rhs = r t2 = tc + self.tstep u2 = TDMAsolver(TDM_a, TDM_b, TDM_c, TDM_rhs) u2 = self.fix_boundary(u2) # Clear negative number densities # u2[u2 < 0] = 0 return (t2, u2) def solve(self, u0, tstart, tstop): """ Solve the Fokker-Planck equation from ``tstart`` to ``tstop``, with initial spectrum/distribution ``u0``. """ uc = u0 tc = tstart logger.debug("Solving Fokker-Planck equation: " + "time: %.3f - %.3f" % (tstart, tstop)) nstep = int((tstop - tc) / self.tstep) logger.debug("Constant time step: %.3f (#%d steps)" % (self.tstep, nstep)) i = 0 while tc < tstop: i += 1 logger.debug("[%d/%d] t=%.3f ..." % (i, nstep, tc)) tc, uc = self.solve_step(tc, uc) return uc