# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> # MIT license """ Simulation of point sources for 21cm signal detection Point sources types ------------------- 1. Star forming (SF) galaxies 2. Star bursting (SB) galaxies 3. Radio quiet AGN (RQ_AGN) 4. Faranoff-Riley I (FRI) 5. Faranoff-Riley II (FRII) References ---------- [1] Wilman et al., "A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes", 2008, MNRAS, 388, 1335-1348. http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W [2] Jelic et al., "Foreground simulations for the LOFAR-Epoch of Reionization Experiment", 2008, MNRAS, 389, 1319-1335. http://adsabs.harvard.edu/abs/2008MNRAS.389.1319W [3] Spherical uniform distribution https://www.jasondavies.com/maps/random-points/ """ import os import numpy as np import pandas as pd import healpy as hp from .psparams import PixelParams class BasePointSource: """ The basic class of point sources Parameters ---------- z: float; Redshift, z ~ U(0,20) dA: au.Mpc; Angular diameter distance, which is calculated according to the cosmology constants. In this work, it is calculated by module basic_params lumo: au.Jy; Luminosity at the reference frequency. lat: au.deg; The colatitude angle in the spherical coordinate system lon: au.deg; The longtitude angle in the spherical coordinate system area: au.sr; Area of the point sources, sr = rad^2 """ # Init def __init__(self, configs): # configures self.configs = configs # PS_list information self.columns = ['z', 'dA (Mpc)', 'luminosity (Jy)', 'Lat (deg)', 'Lon (deg)', 'Area (sr)'] self.nCols = len(self.columns) self._set_configs() def _set_configs(self): """ Load the configs and set the corresponding class attributes. """ comp = "extragalactic/pointsources/" # common self.nside = self.configs.getn("common/nside") # resolution self.resolution = self.configs.getn(comp+"resolution") # save flag self.save = self.configs.getn(comp+"save") # Output_dir self.output_dir = self.configs.get_path(comp+"output_dir") def calc_number_density(self): pass def calc_cdf(self): """ Calculate cumulative distribution functions for simulating of samples with corresponding reshift and luminosity. Parameter ----------- rho_mat: np.ndarray rho(lumo,z) The number density matrix (joint-distribution of z and flux) of this type of PS. Returns ------- cdf_z, cdf_lumo: np.ndarray Cumulative distribution functions of redshift and flux. """ # Normalization rho_mat = self.rho_mat rho_sum = np.sum(rho_mat) rho_norm = rho_mat / rho_sum # probability distribution of redshift pdf_z = np.sum(rho_norm, axis=0) pdf_lumo = np.sum(rho_norm, axis=1) # Cumulative function cdf_z = np.zeros(pdf_z.shape) cdf_lumo = np.zeros(pdf_lumo.shape) for i in range(len(pdf_z)): cdf_z[i] = np.sum(pdf_z[:i]) for i in range(len(pdf_lumo)): cdf_lumo[i] = np.sum(pdf_lumo[:i]) return cdf_z, cdf_lumo def get_lumo_redshift(self): """ Randomly generate redshif and luminosity at ref frequency using the CDF functions. Paramaters ---------- df_z, cdf_lumo: np.ndarray Cumulative distribution functions of redshift and flux. zbin,lumobin: np.ndarray Bins of redshif and luminosity. Returns ------- z: float Redshift. lumo: au.W/Hz/sr Luminosity. """ # Uniformlly generate random number in interval [0,1] rnd_z = np.random.uniform(0, 1) rnd_lumo = np.random.uniform(0, 1) # Get redshift dist_z = np.abs(self.cdf_z - rnd_z) idx_z = np.where(dist_z == dist_z.min()) z = self.zbin[idx_z[0]] # Get luminosity dist_lumo = np.abs(self.cdf_lumo - rnd_lumo) idx_lumo = np.where(dist_lumo == dist_lumo.min()) lumo = 10 ** self.lumobin[idx_lumo[0]] return float(z), float(lumo) def gen_single_ps(self): """ Generate single point source, and return its data as a list. """ # Redshift and luminosity self.z, self.lumo = self.get_lumo_redshift() # angular diameter distance self.param = PixelParams(self.z) self.dA = self.param.dA # W/Hz/Sr to Jy dA = self.dA * 3.0856775814671917E+22 # Mpc to meter self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy] # Position x = np.random.uniform(0, 1) self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg] self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg] # Area npix = hp.nside2npix(self.nside) self.area = 4 * np.pi / npix # [sr] ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, self.area] return ps_list def gen_catalog(self): """ Generate num_ps of point sources and save them into a csv file. """ # Init ps_table = np.zeros((self.num_ps, self.nCols)) for x in range(self.num_ps): ps_table[x, :] = self.gen_single_ps() # Transform into Dataframe self.ps_catalog = pd.DataFrame(ps_table, columns=self.columns, index=list(range(self.num_ps))) def save_as_csv(self): """Save the catalog""" if not os.path.exists(self.output_dir): os.mkdir(self.output_dir) pattern = "{prefix}.csv" filename = pattern.format(prefix=self.prefix) # save to csv if self.save: file_name = os.path.join(self.output_dir, filename) self.ps_catalog.to_csv(file_name) return file_name