# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> # MIT license import numpy as np import healpy as hp from .base import BasePointSource from .psparams import PixelParams from ...utils import grid from ...utils import convert class FRII(BasePointSource): """ Generate Faranoff-Riley II (FRII) AGN Parameters ---------- lobe_maj: float The major half axis of the lobe lobe_min: float The minor half axis of the lobe lobe_ang: float The rotation angle of the lobe correspoind to line of sight Reference ---------- [1] Wang J et al., "How to Identify and Separate Bright Galaxy Clusters from the Low-frequency Radio Sky?", 2010, ApJ, 723, 620-633. http://adsabs.harvard.edu/abs/2010ApJ...723..620W [2] Fast cirles drawing https://github.com/liweitianux/fg21sim/fg21sim/utils/draw.py https://github.com/liweitianux/fg21sim/fg21sim/utils/grid.py """ def __init__(self, configs): super().__init__(configs) self.columns.extend( ['lobe_maj (rad)', 'lobe_min (rad)', 'lobe_ang (deg)']) self.nCols = len(self.columns) self._set_configs() # Paramters for core/lobe ratio # Willman et al. 2008 Sec2.5.(iii)-(iv) self.xmed = -2.8 # Lorentz factor of the jet self.gamma = 8 # Number density matrix self.rho_mat = self.calc_number_density() # Cumulative distribution of z and lumo self.cdf_z, self.cdf_lumo = self.calc_cdf() def _set_configs(self): """Load the configs and set the corresponding class attributes""" super()._set_configs() pscomp = "extragalactic/pointsources/FRII/" # point sources amount self.num_ps = self.configs.getn(pscomp+"numps") # prefix self.prefix = self.configs.getn(pscomp+"prefix") # redshift bin z_type = self.configs.getn(pscomp+"z_type") if z_type == 'custom': start = self.configs.getn(pscomp+"z_start") stop = self.configs.getn(pscomp+"z_stop") step = self.configs.getn(pscomp+"z_step") self.zbin = np.arange(start, stop + step, step) else: self.zbin = np.arange(0.1, 10, 0.05) # luminosity bin lumo_type = self.configs.getn(pscomp+"lumo_type") if lumo_type == 'custom': start = self.configs.getn(pscomp+"lumo_start") stop = self.configs.getn(pscomp+"lumo_stop") step = self.configs.getn(pscomp+"lumo_step") self.lumobin = np.arange(start, stop + step, step) else: self.lumobin = np.arange(25.5, 30.5, 0.1) # [W/Hz/sr] def calc_number_density(self): """ Calculate number density rho(lumo,z) of FRI References ---------- [1] Wilman et al., "A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes", 2008, MNRAS, 388, 1335-1348. http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W [2] Willott et al., "The radio luminosity function from the low-frequency 3CRR, 6CE and 7CRS complete samples", 2001, MNRAS, 322, 536-552. http://adsabs.harvard.edu/abs/2001MNRAS.322..536W Returns ------- rho_mat: np.ndarray Number density matris (joint-distribution of luminosity and reshift). """ # Init rho_mat = np.zeros((len(self.lumobin), len(self.zbin))) # Parameters # Refer to [2] Table. 1 model C and Willman's section 2.4 alpha = 2.27 # spectral index lumo_star = 10.0**26.95 # critical luminosity rho_l0 = 10.0**(-6.196) # normalization constant z0 = 1.91 # center redshift z2 = 1.378 # variance # Calculation for i, z in enumerate(self.zbin): # space density revolusion fh = np.exp(-0.5 * (z - z0)**2 / z2**2) rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) ** (-alpha) * np.exp(-lumo_star / 10.0**self.lumobin)) * fh) return rho_mat def gen_lobe(self): """ Calculate lobe parameters References ---------- [1] Wilman et al., "A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes", 2008, MNRAS, 388, 1335-1348. http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W Return ------ lobe: list lobe = [lobe_maj, lobe_min, lobe_ang], which represent the major and minor axes and the rotation angle. """ D0 = 1 # [Mpc] self.lobe_maj = 0.5 * np.random.uniform(0, D0 * (1 + self.z)**(-1.4)) self.lobe_min = self.lobe_maj * np.random.uniform(0.2, 1) self.lobe_ang = np.random.uniform(0, np.pi) / np.pi * 180 # Transform to pixel self.lobe_maj = self.param.get_angle(self.lobe_maj) self.lobe_min = self.param.get_angle(self.lobe_min) lobe = [self.lobe_maj, self.lobe_min, self.lobe_ang] return lobe def gen_single_ps(self): """ Generate single point source, and return its data as a list. """ # Redshift and luminosity self.z, self.lumo = self.get_lumo_redshift() self.lumo_sr = self.lumo # angular diameter distance self.param = PixelParams(self.z) self.dA = self.param.dA # W/Hz/Sr to Jy dA = self.dA * 3.0856775814671917E+22 # Mpc to meter self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy] # Position x = np.random.uniform(0, 1) self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg] self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg] # lobe lobe = self.gen_lobe() # Area self.area = np.pi * self.lobe_maj * self.lobe_min ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, self.area] ps_list.extend(lobe) return ps_list def draw_single_ps(self, freq): """ Designed to draw the elliptical lobes of FRI and FRII Prameters --------- nside: int and dyadic self.ps_catalog: pandas.core.frame.DataFrame Data of the point sources ps_type: int Class type of the point soruces freq: float frequency """ # Init resolution = self.resolution / 60 # [degree] npix = hp.nside2npix(self.nside) hpmap = np.zeros((npix,)) num_ps = self.ps_catalog.shape[0] # Gen flux list Tb_list = self.calc_Tb(freq) ps_lobe = Tb_list[:, 1] # Iteratively draw ps for i in range(num_ps): # Parameters c_lat = self.ps_catalog['Lat (deg)'][i] # core lat [deg] c_lon = self.ps_catalog['Lon (deg)'][i] # core lon [au.deg] lobe_maj = self.ps_catalog['lobe_maj (rad)'][ i] * 180 / np.pi # [deg] lobe_min = self.ps_catalog['lobe_min (rad)'][ i] * 180 / np.pi # [deg] lobe_ang = self.ps_catalog['lobe_ang (deg)'][ i] / 180 * np.pi # [rad] # Offset to the core, refer to Willman Sec2.5.vii offset = lobe_maj * 2 * np.random.uniform(0.2, 0.8) # Lobe1 lobe1_lat = (lobe_maj / 2 + offset) * np.cos(lobe_ang) lobe1_lat = c_lat + lobe1_lat lobe1_lon = (lobe_maj / 2 + offset) * np.sin(lobe_ang) lobe1_lon = c_lon + lobe1_lon # draw # Fill with ellipse lon, lat, gridmap = grid.make_grid_ellipse( (lobe1_lon, lobe1_lat), (lobe_maj, lobe_min), resolution, lobe_ang / np.pi * 180) indices, values = grid.map_grid_to_healpix( (lon, lat, gridmap), self.nside) hpmap[indices] += ps_lobe[i] # lobe1_hotspot lobe1_hot_lat = (lobe_maj + offset) * np.cos(lobe_ang) lobe1_hot_lat = (c_lat + 90 + lobe1_lat) / 180 * np.pi lobe1_hot_lon = (lobe_maj + offset) * np.sin(lobe_ang) lobe1_hot_lon = (c_lon + lobe1_lon) / 180 * np.pi if lobe1_hot_lat < 0: lobe1_hot_lat += np.pi elif lobe1_hot_lat > np.pi: lobe1_hot_lat -= np.pi lobe1_hot_index = hp.ang2pix( self.nside, lobe1_hot_lat, lobe1_hot_lon) hpmap[lobe1_hot_index] += Tb_list[i, 2] # Lobe2 lobe2_lat = (lobe_maj / 2) * np.cos(lobe_ang + np.pi) lobe2_lat = c_lat + lobe2_lat lobe2_lon = (lobe_maj / 2) * np.sin(lobe_ang + np.pi) lobe2_lon = c_lon + lobe2_lon # draw # Fill with ellipse lon, lat, gridmap = grid.make_grid_ellipse( (lobe2_lon, lobe2_lat), (lobe_maj, lobe_min), resolution, lobe_ang / np.pi * 180) indices, values = grid.map_grid_to_healpix( (lon, lat, gridmap), self.nside) hpmap[indices] += ps_lobe[i] # lobe2_hotspot lobe2_hot_lat = (lobe_maj + offset) * np.cos(lobe_ang + np.pi) lobe2_hot_lat = (c_lat + 90 + lobe1_lat) / 180 * np.pi lobe2_hot_lon = (lobe_maj + offset) * np.sin(lobe_ang + np.pi) lobe2_hot_lon = (c_lon + lobe1_lon) / 180 * np.pi if lobe2_hot_lat < 0: lobe2_hot_lat += np.pi elif lobe2_hot_lat > np.pi: lobe2_hot_lat -= np.pi lobe2_hot_index = hp.ang2pix( self.nside, lobe2_hot_lat, lobe2_hot_lon) hpmap[lobe2_hot_index] += Tb_list[i, 2] # Core pix_tmp = hp.ang2pix(self.nside, (self.ps_catalog['Lat (deg)'] + 90) / 180 * np.pi, self.ps_catalog['Lon (deg)'] / 180 * np.pi) ps_core = Tb_list[:, 0] hpmap[pix_tmp] += ps_core return hpmap def draw_ps(self, freq): """ Read csv ps list file, and generate the healpix structure vector with the respect frequency. """ # Init num_freq = len(freq) npix = hp.nside2npix(self.nside) hpmaps = np.zeros((npix, num_freq)) # Gen ps_catalog self.gen_catalog() # get hpmaps for i in range(num_freq): hpmaps[:, i] = self.draw_single_ps(freq[i]) return hpmaps def calc_single_Tb(self, area, freq): """ Calculate brightness temperatur of a single ps Parameters ------------ area: `~astropy.units.Quantity` Area of the PS, e.g., `1.0*au.sr` freq: `~astropy.units.Quantity` Frequency, e.g., `1.0*au.MHz` Return ------ Tb:`~astropy.units.Quantity` Average brightness temperature, e.g., `1.0*au.K` """ # Init freq_ref = 151 # [MHz] freq = freq # [MHz] # Luminosity at 151MHz lumo_151 = self.lumo # [Jy] # Calc flux # core-to-extend ratio ang = self.lobe_ang / 180 * np.pi x = np.random.normal(self.xmed, 0.5) beta = np.sqrt((self.gamma**2 - 1) / self.gamma) B_theta = 0.5 * ((1 - beta * np.cos(ang))**-2 + (1 + beta * np.cos(ang))**-2) ratio_obs = 10**x * B_theta # Core lumo_core = ratio_obs / (1 + ratio_obs) * lumo_151 a0 = (np.log10(lumo_core) - 0.07 * np.log10(freq_ref * 10.0E-3) + 0.29 * np.log10(freq_ref * 10.0E-3) * np.log10(freq_ref * 10.0E-3)) lgs = (a0 + 0.07 * np.log10(freq * 10.0E-3) - 0.29 * np.log10(freq * 10.0E-3) * np.log10(freq * 10.0E-3)) flux_core = 10**lgs # [Jy] # core area npix = hp.nside2npix(self.nside) core_area = 4 * np.pi / npix # [sr] Tb_core = convert.Fnu_to_Tb_fast(flux_core, core_area, freq) # [K] # lobe lumo_lobe = lumo_151 * (1 - ratio_obs) / (1 + ratio_obs) # [Jy] flux_lobe = (freq / freq_ref)**(-0.75) * lumo_lobe Tb_lobe = convert.Fnu_to_Tb_fast(flux_lobe, area, freq) # [K] # hotspots # Willman Eq. (3) f_hs = (0.4 * (np.log10(self.lumo_sr) - 25.5) + np.random.uniform(-0.5, 0.5)) Tb_hotspot = Tb_lobe * (1 + f_hs) Tb = [Tb_core, Tb_lobe, Tb_hotspot] return Tb def calc_Tb(self, freq): """ Calculate the surface brightness temperature of the point sources. Parameters ------------ area: `~astropy.units.Quantity` Area of the PS, e.g., `1.0*au.sr` freq: `~astropy.units.Quantity` Frequency, e.g., `1.0*au.MHz` Return ------ Tb_list: list Point sources brightness temperature """ # Tb_list num_ps = self.ps_catalog.shape[0] Tb_list = np.zeros((num_ps, 3)) # Iteratively calculate Tb for i in range(num_ps): ps_area = self.ps_catalog['Area (sr)'][i] # [sr] Tb_list[i, :] = self.calc_single_Tb(ps_area, freq) return Tb_list