# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com> # MIT license import numpy as np import healpy as hp # from .psparams import PixelParams from .base import BasePointSource from ...utils import grid from ...utils import convert from .psparams import PixelParams class StarForming(BasePointSource): """ Generate star forming point sources, inheritate from PointSource class. Reference --------- [1] Fast cirles drawing https://github.com/liweitianux/fg21sim/fg21sim/utils/draw.py https://github.com/liweitianux/fg21sim/fg21sim/utils/grid.py """ def __init__(self, configs): super().__init__(configs) self.columns.append('radius (rad)') self.nCols = len(self.columns) self._set_configs() # Number density matrix self.rho_mat = self.calc_number_density() # Cumulative distribution of z and lumo self.cdf_z, self.cdf_lumo = self.calc_cdf() def _set_configs(self): """ Load the configs and set the corresponding class attributes""" super()._set_configs() pscomp = "extragalactic/pointsources/starforming/" # point sources amount self.num_ps = self.configs.getn(pscomp+"numps") # prefix self.prefix = self.configs.getn(pscomp+"prefix") # redshift bin z_type = self.configs.getn(pscomp+"z_type") if z_type == 'custom': start = self.configs.getn(pscomp+"z_start") stop = self.configs.getn(pscomp+"z_stop") step = self.configs.getn(pscomp+"z_step") self.zbin = np.arange(start, stop + step, step) else: self.zbin = np.arange(0.1, 10, 0.05) # luminosity bin lumo_type = self.configs.getn(pscomp+"lumo_type") if lumo_type == 'custom': start = self.configs.getn(pscomp+"lumo_start") stop = self.configs.getn(pscomp+"lumo_stop") step = self.configs.getn(pscomp+"lumo_step") self.lumobin = np.arange(start, stop + step, step) else: self.lumobin = np.arange(17, 25.5, 0.1) # [W/Hz/sr] def calc_number_density(self): """ Calculate number density rho(lumo,z) of FRI References ---------- [1] Wilman et al., "A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes", 2008, MNRAS, 388, 1335-1348. http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W Returns ------- rho_mat: np.ndarray Number density matris (joint-distribution of luminosity and reshift). """ # Init rho_mat = np.zeros((len(self.lumobin), len(self.zbin))) # Parameters # Refer to Willman's section 2.4 alpha = 0.7 # spectral index lumo_star = 10.0**22 # critical luminosity at 1400MHz rho_l0 = 10.0**(-7) # normalization constant z1 = 1.5 # cut-off redshift k1 = 3.1 # index of space density revolution # Calculation for i, z in enumerate(self.zbin): if z <= z1: rho_mat[:, i] = (rho_l0 * (10**self.lumobin / lumo_star) ** (-alpha) * np.exp(-10**self.lumobin / lumo_star) * (1 + z)**k1) else: rho_mat[:, i] = (rho_l0 * (10**self.lumobin / lumo_star) ** (-alpha) * np.exp(-10**self.lumobin / lumo_star) * (1 + z1)**k1) return rho_mat def get_radius(self): """ Generate the disc diameter of normal starforming galaxies. Reference --------- [1] Wilman et al., Eq(7-9), "A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes", 2008, MNRAS, 388, 1335-1348. http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W """ # Willman Eq. (8) delta = np.random.normal(0, 0.3) log_M_HI = 0.44 * np.log10(self.lumo) + 0.48 + delta # Willman Eq. (7) log_D_HI = ((log_M_HI - (6.52 + np.random.uniform(-0.06, 0.06))) / 1.96 + np.random.uniform(-0.04, 0.04)) # Willman Eq. (9) log_D = log_D_HI - 0.23 - np.log10(1 + self.z) self.radius = 10**log_D / 2 * 1e-3 # [Mpc] return self.radius def gen_single_ps(self): """ Generate single point source, and return its data as a list. """ # Redshift and luminosity self.z, self.lumo = self.get_lumo_redshift() # angular diameter distance self.param = PixelParams(self.z) self.dA = self.param.dA # Radius self.radius = self.param.get_angle(self.get_radius()) # [rad] # W/Hz/Sr to Jy dA = self.dA * 3.0856775814671917E+22 # Mpc to meter self.lumo = self.lumo / dA**2 / (10.0**-24) # [Jy] # Position x = np.random.uniform(0, 1) self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90) # [deg] self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180 # [deg] # Area self.area = np.pi * self.radius**2 # [sr] ? ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, self.area, self.radius] return ps_list def draw_single_ps(self, freq): """ Designed to draw the circular star forming and star bursting ps. Prameters --------- nside: int and dyadic number of sub pixel in a cell of the healpix structure self.ps_catalog: pandas.core.frame.DataFrame Data of the point sources freq: float frequency """ # Init npix = hp.nside2npix(self.nside) hpmap = np.zeros((npix,)) # Gen Tb list Tb_list = self.calc_Tb(freq) # Iteratively draw the ps num_ps = self.ps_catalog.shape[0] resolution = self.resolution / 60 # [degree] for i in range(num_ps): # grid ps_radius = self.ps_catalog['radius (rad)'][i] # [rad] ps_radius = ps_radius * 180 / np.pi # radius [deg] c_lat = self.ps_catalog['Lat (deg)'][i] # core_lat [deg] c_lon = self.ps_catalog['Lon (deg)'][i] # core_lon [deg] # Fill with circle lon, lat, gridmap = grid.make_grid_ellipse( (c_lon, c_lat), (2 * ps_radius, 2 * ps_radius), resolution) indices, values = grid.map_grid_to_healpix( (lon, lat, gridmap), self.nside) hpmap[indices] += Tb_list[i] return hpmap def draw_ps(self, freq): """ Read csv ps list file, and generate the healpix structure vector with the respect frequency. """ # Init num_freq = len(freq) npix = hp.nside2npix(self.nside) hpmaps = np.zeros((npix, num_freq)) # Gen ps_catalog self.gen_catalog() # get hpmaps for i in range(num_freq): hpmaps[:, i] = self.draw_single_ps(freq[i]) return hpmaps def calc_single_Tb(self, area, freq): """ Calculate brightness temperatur of a single ps Parameters ------------ area: `~astropy.units.Quantity` Area of the PS, e.g., `1.0*au.sr2` freq: `~astropy.units.Quantity` Frequency, e.g., `1.0*au.MHz` Return ------ Tb:`~astropy.units.Quantity` Average brightness temperature, e.g., `1.0*au.K` """ # Init freq_ref = 1400 # [MHz] freq = freq # [MHz] # Luminosity at 1400MHz lumo_1400 = self.lumo # [Jy] # Calc flux flux = (freq / freq_ref)**(-0.7) * lumo_1400 # Calc brightness temperature Tb = convert.Fnu_to_Tb_fast(flux, area, freq) return Tb def calc_Tb(self, freq): """ Calculate the surface brightness temperature of the point sources. Parameters ------------ area: `~astropy.units.Quantity` Area of the PS, e.g., `1.0*au.sr` freq: `~astropy.units.Quantity` Frequency, e.g., `1.0*au.MHz` Return ------ Tb_list: list Point sources brightness temperature """ # Tb_list num_ps = self.ps_catalog.shape[0] Tb_list = np.zeros((num_ps,)) # Iteratively calculate Tb for i in range(num_ps): ps_area = self.ps_catalog['Area (sr)'][i] # [sr] Tb_list[i] = self.calc_single_Tb(ps_area, freq) return Tb_list