# Copyright (c) 2016-2017 Weitian LI <weitian@aaronly.me> # MIT license """ Diffuse Galactic synchrotron emission (unpolarized) simulations. """ import os import logging from datetime import datetime, timezone import numpy as np from astropy.io import fits import astropy.units as au import healpy as hp from ..sky import get_sky logger = logging.getLogger(__name__) class Synchrotron: """ Simulate the diffuse Galactic synchrotron emission based on an existing template. Parameters ---------- configs : ConfigManager object An `ConfigManager` object contains default and user configurations. For more details, see the example config specification. Attributes ---------- ??? References ---------- ??? """ # Component name name = "Galactic synchrotron (unpolarized)" def __init__(self, configs): self.configs = configs self._set_configs() def _set_configs(self): """Load the configs and set the corresponding class attributes.""" comp = "galactic/synchrotron" self.template_path = self.configs.get_path(comp+"/template") self.template_freq = self.configs.getn(comp+"/template_freq") self.template_unit = au.Unit( self.configs.getn(comp+"/template_unit")) self.indexmap_path = self.configs.get_path(comp+"/indexmap") self.add_smallscales = self.configs.getn(comp+"/add_smallscales") self.smallscales_added = False self.lmin = self.configs.getn(comp+"/lmin") self.lmax = self.configs.getn(comp+"/lmax") self.prefix = self.configs.getn(comp+"/prefix") self.save = self.configs.getn(comp+"/save") self.output_dir = self.configs.get_path(comp+"/output_dir") # output self.filename_pattern = self.configs.getn("output/filename_pattern") self.use_float = self.configs.getn("output/use_float") self.checksum = self.configs.getn("output/checksum") self.clobber = self.configs.getn("output/clobber") self.freq_unit = au.Unit(self.configs.getn("frequency/unit")) # logger.info("Loaded and setup configurations") def _load_maps(self): """Load the template map and spectral index map.""" sky = get_sky(self.configs) logger.info("Loading template map ...") self.template = sky.load(self.template_path) logger.info("Loading spectral index map ...") self.indexmap = sky.load(self.indexmap_path) def _add_smallscales(self): """ Add fluctuations on small scales to the template map. NOTE: Only when the input template is a HEALPix map, this function will be applied to add the small-scale fluctuations, which assuming a angular power spectrum model. XXX/TODO: * Support using different models. * This should be extensible/plug-able, e.g., a separate module and allow easily add new models for use. References ---------- [1] M. Remazeilles et al. 2015, MNRAS, 451, 4311-4327 "An improved source-subtracted and destriped 408-MHz all-sky map" Sec. 4.2: Small-scale fluctuations """ if (not self.add_smallscales) or (self.smallscales_added): return if self.template.type_ != "healpix": logger.warning("Input template map is NOT a HEALPix map; " + "skip adding small-scale fluctuations!") return # To add small scale fluctuations # model: Remazeilles15 gamma = -2.703 # index of the power spectrum between l [30, 90] sigma_tp = 56 # original beam resolution of the template [ arcmin ] alpha = 0.0599 beta = 0.782 # angular power spectrum of the Gaussian random field ell = np.arange(self.lmax+1).astype(np.int) cl = np.zeros(ell.shape) ell_idx = ell >= self.lmin cl[ell_idx] = (ell[ell_idx] ** gamma * 1.0 - np.exp(-ell[ell_idx]**2 * sigma_tp**2)) cl[ell < self.lmin] = cl[self.lmin] # generate a realization of the Gaussian random field gss = hp.synfast(cls=cl, nside=self.template.nside, new=True) # whiten the Gaussian random field gss = (gss - gss.mean()) / gss.std() hpmap_smallscales = alpha * gss * self.template.data**beta self.template.data += hpmap_smallscales logger.info("Added small-scale fluctuations to template map") def _make_filepath(self, **kwargs): """ Make the path of output file according to the filename pattern and output directory loaded from configurations. """ data = { "prefix": self.prefix, } data.update(kwargs) filename = self.filename_pattern.format(**data) filepath = os.path.join(self.output_dir, filename) return filepath def _make_header(self): """ Make the header with detail information (e.g., parameters and history) for the simulated products. """ header = fits.Header() header["COMP"] = (self.name, "Emission component") header["BUNIT"] = ("K", "data unit is Kelvin") header["CREATOR"] = (__name__, "File creator") # TODO: history = [] comments = [] for hist in history: header.add_history(hist) for cmt in comments: header.add_comment(cmt) self.header = header logger.info("Created FITS header") def output(self, skymap, frequency): """ Write the simulated synchrotron map to disk with proper header keywords and history. Returns ------- outfile : str The (absolute) path to the output sky map file. """ outfile = self._make_filepath(frequency=frequency) if not hasattr(self, "header"): self._make_header() header = self.header.copy() header["FREQ"] = (frequency, "Frequency [ MHz ]") header["DATE"] = ( datetime.now(timezone.utc).astimezone().isoformat(), "File creation date" ) if self.use_float: skymap = skymap.astype(np.float32) sky = get_sky(configs=self.configs) sky.data = skymap sky.header = header sky.write(outfile, clobber=self.clobber, checksum=self.checksum) return outfile def preprocess(self): """ Perform the preparation procedures for the final simulations. Attributes ---------- _preprocessed : bool This attribute presents and is ``True`` after the preparation procedures are performed, which indicates that it is ready to do the final simulations. """ if hasattr(self, "_preprocessed") and self._preprocessed: return # logger.info("{name}: preprocessing ...".format(name=self.name)) self._load_maps() self._add_smallscales() # self._preprocessed = True def simulate_frequency(self, frequency): """ Transform the template map to the requested frequency, according to the spectral model and using an spectral index map. Returns ------- skymap_f : 1D `~numpy.ndarray` The sky map at the input frequency. filepath : str The (absolute) path to the output sky map if saved, otherwise ``None``. """ self.preprocess() # logger.info("Simulating {name} map at {freq} ({unit}) ...".format( name=self.name, freq=frequency, unit=self.freq_unit)) skymap_f = (self.template.data * (frequency / self.template_freq) ** self.indexmap.data) # if self.save: filepath = self.output(skymap_f, frequency) else: filepath = None return (skymap_f, filepath) def simulate(self, frequencies): """ Simulate the synchrotron map at the specified frequencies. Returns ------- skymaps : list[1D `~numpy.ndarray`] List of sky maps at each frequency. paths : list[str] List of (absolute) path to the output sky maps. """ skymaps = [] paths = [] for f in np.array(frequencies, ndmin=1): skymap_f, outfile = self.simulate_frequency(f) skymaps.append(skymap_f) paths.append(outfile) return (skymaps, paths) def postprocess(self): """Perform the post-simulation operations before the end.""" pass