# Copyright (c) 2016 Weitian LI # MIT license """ Utilities for conversion among common astronomical quantities. """ import numpy as np import astropy.units as au import numba def Fnu_to_Tb(Fnu, omega, freq): """Convert flux density to brightness temperature, using the Rayleigh-Jeans law, in the Rayleigh-Jeans limit. Parameters ---------- Fnu : `~astropy.units.Quantity` Input flux density, e.g., `1.0*au.Jy` omega : `~astropy.units.Quantity` Source angular size/area, e.g., `1.0*au.sr` freq : `~astropy.units.Quantity` Frequency where the flux density measured, e.g., `1.0*au.MHz` Returns ------- Tb : `~astropy.units.Quantity` Brightness temperature, with default unit `au.K` References ---------- - Brightness and Flux http://www.cv.nrao.edu/course/astr534/Brightness.html - Wikipedia: Brightness Temperature https://en.wikipedia.org/wiki/Brightness_temperature - NJIT: Physics 728: Introduction to Radio Astronomy: Lecture #1 https://web.njit.edu/~gary/728/Lecture1.html - Astropy: Equivalencies: Brightness Temperature / Flux Density http://docs.astropy.org/en/stable/units/equivalencies.html """ equiv = au.brightness_temperature(omega, freq) Tb = Fnu.to(au.K, equivalencies=equiv) return Tb def Sb_to_Tb(Sb, freq): """Convert surface brightness to brightness temperature, using the Rayleigh-Jeans law, in the Rayleigh-Jeans limit. Parameters ---------- Sb : `~astropy.units.Quantity` Input surface brightness, e.g., `1.0*au.Jy/au.sr` freq : `~astropy.units.Quantity` Frequency where the flux density measured, e.g., `1.0*au.MHz` Returns ------- Tb : `~astropy.units.Quantity` Brightness temperature, with default unit `au.K` """ omega = 1.0 * au.sr Fnu = Sb * omega return Fnu_to_Tb(Fnu, omega, freq) @numba.jit(nopython=True) def Sb_to_Tb_fast(Sb, freq): """Convert surface brightness to brightness temperature, using the Rayleigh-Jeans law, in the Rayleigh-Jeans limit. This function does the calculations explicitly, and does NOT rely on the `astropy.units`, therefore it is faster. However, the input parameters must be in right units. Tb = Sb * c^2 / (2 * k_B * nu^2) where `SB` is the surface brightness density measured at a certain frequency (unit: [ Jy/rad^2 ] = [ erg/s/cm^2/Hz/rad^2 ]). Parameters ---------- Sb : float Input surface brightness, unit [ Jy/deg^2 ] freq : float Frequency where the flux density measured, unit [ MHz ] Returns ------- Tb : float Calculated brightness temperature, unit [ K ] """ # NOTE: `radian` is dimensionless rad2_to_deg2 = np.rad2deg(1.0) * np.rad2deg(1.0) Sb_rad2 = Sb * rad2_to_deg2 # unit: [ Jy/rad^2 ] -> [ Jy ] c = 29979245800.0 # speed of light, [ cm/s ] k_B = 1.3806488e-16 # Boltzmann constant, [ erg/K ] coef = 1e-35 # take care the unit conversions Tb = coef * (Sb_rad2 * c*c) / (2 * k_B * freq*freq) # unit: [ K ] return Tb @numba.jit(nopython=True) def Fnu_to_Tb_fast(Fnu, omega, freq): """Convert flux density to brightness temperature, using the Rayleigh-Jeans law, in the Rayleigh-Jeans limit. This function does the calculations explicitly, and does NOT rely on the `astropy.units`, therefore it is faster. However, the input parameters must be in right units. Parameters ---------- Fnu : float Input flux density, unit [ Jy ] omega : float Source angular size/area, unit [ deg^2 ] freq : float Frequency where the flux density measured, unit [ MHz ] Returns ------- Tb : float Calculated brightness temperature, unit [ K ] """ Sb = Fnu / omega return Sb_to_Tb_fast(Sb, freq)