# Copyright (c) 2016-2017 Weitian LI <weitian@aaronly.me> # MIT license """ Utilities for conversion among common astronomical quantities. """ import numpy as np import astropy.units as au import numba def Fnu_to_Tb(Fnu, omega, freq): """ Convert flux density to brightness temperature, using the Rayleigh-Jeans law, in the Rayleigh-Jeans limit. Parameters ---------- Fnu : `~astropy.units.Quantity` Input flux density, e.g., `1.0*au.Jy` omega : `~astropy.units.Quantity` Source angular size/area, e.g., `100*au.arcsec**2` freq : `~astropy.units.Quantity` Frequency where the flux density measured, e.g., `120*au.MHz` Returns ------- Tb : `~astropy.units.Quantity` Brightness temperature, with default unit `au.K` References ---------- - Brightness and Flux http://www.cv.nrao.edu/course/astr534/Brightness.html - Wikipedia: Brightness Temperature https://en.wikipedia.org/wiki/Brightness_temperature - NJIT: Physics 728: Introduction to Radio Astronomy: Lecture #1 https://web.njit.edu/~gary/728/Lecture1.html - Astropy: Equivalencies: Brightness Temperature / Flux Density http://docs.astropy.org/en/stable/units/equivalencies.html """ equiv = au.brightness_temperature(omega, freq) Tb = Fnu.to(au.K, equivalencies=equiv) return Tb def Sb_to_Tb(Sb, freq): """ Convert surface brightness to brightness temperature, using the Rayleigh-Jeans law, in the Rayleigh-Jeans limit. Parameters ---------- Sb : `~astropy.units.Quantity` Input surface brightness, e.g., `1.0*(au.Jy/au.arcsec**2)` freq : `~astropy.units.Quantity` Frequency where the flux density measured, e.g., `120*au.MHz` Returns ------- Tb : `~astropy.units.Quantity` Brightness temperature, with default unit `au.K` """ omega = 1.0 * au.arcsec**2 Fnu = (Sb * omega).to(au.Jy) # [Jy] return Fnu_to_Tb(Fnu, omega, freq) @numba.jit(nopython=True) def Sb_to_Tb_fast(Sb, freq): """ Convert surface brightness to brightness temperature, using the Rayleigh-Jeans law, in the Rayleigh-Jeans limit. This function does the calculations explicitly, and does NOT rely on the `astropy.units`, therefore it is much faster. However, the input parameters must be in right units. Tb = Sb * c^2 / (2 * k_B * nu^2) where `Sb` is the surface brightness density measured at a certain frequency, in units of [Jy/arcsec^2]. 1 [Jy] = 1e-23 [erg/s/cm^2/Hz] = 1e-26 [W/m^2/Hz] Parameters ---------- Sb : float Input surface brightness Unit: [Jy/arcsec^2] freq : float Frequency where the flux density measured Unit: [MHz] Returns ------- Tb : float Calculated brightness temperature Unit: [K] """ # NOTE: [rad] & [sr] are dimensionless arcsec2 = (np.deg2rad(1) / 3600) ** 2 # [sr] c = 29979245800.0 # speed of light, [cm/s] k_B = 1.3806488e-16 # Boltzmann constant, [erg/K] coef = 1e-35 # take care the unit conversions Tb = coef * (Sb * c*c) / (2 * k_B * freq*freq * arcsec2) # [K] return Tb @numba.jit(nopython=True) def Fnu_to_Tb_fast(Fnu, omega, freq): """ Convert flux density to brightness temperature, using the Rayleigh-Jeans law, in the Rayleigh-Jeans limit. This function does NOT invoke the `astropy.units`, therefore it is much faster. Parameters ---------- Fnu : float Input flux density Unit: [Jy] = 1e-23 [erg/s/cm^2/Hz] = 1e-26 [W/m^2/Hz] omega : float Source angular size/area Unit: [arcsec^2] freq : float Frequency where the flux density measured Unit: [MHz] Returns ------- Tb : float Calculated brightness temperature Unit: [K] """ Sb = Fnu / omega # [Jy/arcsec^2] return Sb_to_Tb_fast(Sb, freq)